Now we are getting to the fun, here is a key result that we will need to know about differentiating a power multiplied with an exponential.
ddttne−at=ntn−1e−at−atne−at
The fun begins with integrating both sides:
∫ddttne−atdt=∫(ntn−1e−at−atne−at)dt
To make life simple we denote I(n)=∫tne−atdt, so we have:
tneat=nI(n−1)−aI(n)I(n)=naI(n−1)−1atne−at
We could have just expanded this, but the notation is so cubersome, let consider a simpler problem below like this:
A(n)=npA(n−1)+qtn=n!p(n−1)!A(n−1)+q0∑k=0n!pktn−k(n−k)!=n!p(n−1)!((n−1)pA(n−2)+qtn−1)+q0∑k=0n!pktn−k(n−k)!=n!p(n−1)!(n−1)pA(n−2)+qn!ptn−1(n−1)!+q0∑k=0n!pktn−k(n−k)!=n!p2(n−2)!A(n−2)+q1∑k=0n!pktn−k(n−k)!=...=n!pn(n−n)!A(n−n)+qn−1∑k=0n!pktn−k(n−k)!=pnn!A(0)+qn−1∑k=0n!pktn−k(n−k)!
Imagine how much more complicated if we have not used the substitution. Now substituting back we have this:
I(n)=naI(n−1)−1atne−at=(1a)nn!I(0)−1ae−atn−1∑k=0n!(1a)ktn−k(n−k)!=(1a)nn!e−at−a−1ae−atn−1∑k=0n!tn−kak(n−k)!
I know, the last summation term is ugly, bear with me, we will kill it, by taking t→∞ and t→0. Using l'hopital's rule, we can write
limt→∞tne−at=limt→∞tneat=limt→∞ntn−1aeat=...=limt→∞n!aneat=0
So as promised, the ugly terms goes away, and therefore:
L(tn)=∞∫0tne−stdt=I(n)|∞0=n!sn+1
QED
ddttne−at=ntn−1e−at−atne−at
The fun begins with integrating both sides:
∫ddttne−atdt=∫(ntn−1e−at−atne−at)dt
To make life simple we denote I(n)=∫tne−atdt, so we have:
tneat=nI(n−1)−aI(n)I(n)=naI(n−1)−1atne−at
We could have just expanded this, but the notation is so cubersome, let consider a simpler problem below like this:
A(n)=npA(n−1)+qtn=n!p(n−1)!A(n−1)+q0∑k=0n!pktn−k(n−k)!=n!p(n−1)!((n−1)pA(n−2)+qtn−1)+q0∑k=0n!pktn−k(n−k)!=n!p(n−1)!(n−1)pA(n−2)+qn!ptn−1(n−1)!+q0∑k=0n!pktn−k(n−k)!=n!p2(n−2)!A(n−2)+q1∑k=0n!pktn−k(n−k)!=...=n!pn(n−n)!A(n−n)+qn−1∑k=0n!pktn−k(n−k)!=pnn!A(0)+qn−1∑k=0n!pktn−k(n−k)!
Imagine how much more complicated if we have not used the substitution. Now substituting back we have this:
I(n)=naI(n−1)−1atne−at=(1a)nn!I(0)−1ae−atn−1∑k=0n!(1a)ktn−k(n−k)!=(1a)nn!e−at−a−1ae−atn−1∑k=0n!tn−kak(n−k)!
I know, the last summation term is ugly, bear with me, we will kill it, by taking t→∞ and t→0. Using l'hopital's rule, we can write
limt→∞tne−at=limt→∞tneat=limt→∞ntn−1aeat=...=limt→∞n!aneat=0
So as promised, the ugly terms goes away, and therefore:
L(tn)=∞∫0tne−stdt=I(n)|∞0=n!sn+1
QED
No comments:
Post a Comment