Question 5 is a hard question, so we will deal with it in parts. Let's first compute the expectation of the position operator on the wavefunctions.
⟨x⟩=L∫0ψ(x,t)∗xψ(x,t)dx=L∫0(√2Lsin(nπxL)e−iEntℏ)∗x(√2Lsin(nπxL)e−iEntℏ)dx=L∫0(√2Lsin(nπxL)eiEntℏ)x(√2Lsin(nπxL)e−iEntℏ)dx=L∫0(√2Lsin(nπxL))x(√2Lsin(nπxL))dx=2LL∫0xsin2(nπxL)dx=2LL∫0x1−cos(2nπxL)2dx=1LL∫0x(1−cos(2nπxL))dx=1LL∫0xdx−1LL∫0xcos(2nπxL))dx=1L(x22)|L0−1LL∫0xcos(2nπxL))dx=L2−1LL∫0xcos(2nπxL))dx=L2−1LL∫0xcos(2nπxL))dx
The remaining integral seems complicated, but we have done with the preparation in the previous post, to use that, we let y=2nπxL, when x=0, we have y=0, when x=L, we have y=2nπ, lastly dy=2nπLdx.
⟨x⟩=L2−1LL∫0xcos(2nπxL))dx=L2−1L2nπ∫0Ly2nπcos(y)L2nπdy=L2−1L(L2nπ)22nπ∫0ycos(y)dy=L2−1L(L2nπ)2(ysiny−cosy)|2nπ0=L2
Therefore the expectation of the position operator is L2, not a surprising result.
⟨x⟩=L∫0ψ(x,t)∗xψ(x,t)dx=L∫0(√2Lsin(nπxL)e−iEntℏ)∗x(√2Lsin(nπxL)e−iEntℏ)dx=L∫0(√2Lsin(nπxL)eiEntℏ)x(√2Lsin(nπxL)e−iEntℏ)dx=L∫0(√2Lsin(nπxL))x(√2Lsin(nπxL))dx=2LL∫0xsin2(nπxL)dx=2LL∫0x1−cos(2nπxL)2dx=1LL∫0x(1−cos(2nπxL))dx=1LL∫0xdx−1LL∫0xcos(2nπxL))dx=1L(x22)|L0−1LL∫0xcos(2nπxL))dx=L2−1LL∫0xcos(2nπxL))dx=L2−1LL∫0xcos(2nπxL))dx
The remaining integral seems complicated, but we have done with the preparation in the previous post, to use that, we let y=2nπxL, when x=0, we have y=0, when x=L, we have y=2nπ, lastly dy=2nπLdx.
⟨x⟩=L2−1LL∫0xcos(2nπxL))dx=L2−1L2nπ∫0Ly2nπcos(y)L2nπdy=L2−1L(L2nπ)22nπ∫0ycos(y)dy=L2−1L(L2nπ)2(ysiny−cosy)|2nπ0=L2
Therefore the expectation of the position operator is L2, not a surprising result.
No comments:
Post a Comment