Question:
Given $x(t) = \cos {\left(\omega t\right)} x\left(0\right) + \frac{\sin {\left(\omega t\right)}}{\omega} \dot x\left(0\right) $, which of the choices are correct?
Solution:
$ \omega T = 2\pi $, the function is periodic. The period does not depend on $ x(0) $ or $ x'(0) $.
Given $x(t) = \cos {\left(\omega t\right)} x\left(0\right) + \frac{\sin {\left(\omega t\right)}}{\omega} \dot x\left(0\right) $, which of the choices are correct?
Solution:
$ \omega T = 2\pi $, the function is periodic. The period does not depend on $ x(0) $ or $ x'(0) $.
No comments:
Post a Comment