Question 5 is a hard question, so we will deal with it in parts. In the second part we computes the expectation of position squared. This is almost identical to the previous post except a single difference in the power of x.
⟨x2⟩=L∫0ψ(x,t)∗x2ψ(x,t)dx=L∫0(√2Lsin(nπxL)e−iEntℏ)∗x2(√2Lsin(nπxL)e−iEntℏ)dx=L∫0(√2Lsin(nπxL)eiEntℏ)x2(√2Lsin(nπxL)e−iEntℏ)dx=L∫0(√2Lsin(nπxL))x2(√2Lsin(nπxL))dx=2LL∫0x2sin2(nπxL)dx=2LL∫0x21−cos(2nπxL)2dx=1LL∫0x2(1−cos(2nπxL))dx=1LL∫0x2dx−1LL∫0x2cos(2nπxL))dx=1L(x33)|L0−1LL∫0x2cos(2nπxL))dx=L23−1LL∫0x2cos(2nπxL))dx
The remaining integral seems complicated, but we have done with the preparation in the previous post, to use that, we let y=2nπxL, when x=0, we have y=0, when x=L, we have y=2nπ, lastly dy=2nπLdx.
⟨x2⟩=L23−1LL∫0x2cos(2nπxL))dx=L23−1L2nπ∫0(Ly2nπ)2cos(y)L2nπdy=L23−1L(L2nπ)32nπ∫0y2cos(y)dy=L23−1L(L2nπ)3(t2sint+2tcost−2sint)|2nπ0=L23−1L(L2nπ)3(4nπ)=L2(13−2(2nπ)2)
Therefore the expectation of the position squared operator is L2(13−2(2nπ)2)
⟨x2⟩=L∫0ψ(x,t)∗x2ψ(x,t)dx=L∫0(√2Lsin(nπxL)e−iEntℏ)∗x2(√2Lsin(nπxL)e−iEntℏ)dx=L∫0(√2Lsin(nπxL)eiEntℏ)x2(√2Lsin(nπxL)e−iEntℏ)dx=L∫0(√2Lsin(nπxL))x2(√2Lsin(nπxL))dx=2LL∫0x2sin2(nπxL)dx=2LL∫0x21−cos(2nπxL)2dx=1LL∫0x2(1−cos(2nπxL))dx=1LL∫0x2dx−1LL∫0x2cos(2nπxL))dx=1L(x33)|L0−1LL∫0x2cos(2nπxL))dx=L23−1LL∫0x2cos(2nπxL))dx
The remaining integral seems complicated, but we have done with the preparation in the previous post, to use that, we let y=2nπxL, when x=0, we have y=0, when x=L, we have y=2nπ, lastly dy=2nπLdx.
⟨x2⟩=L23−1LL∫0x2cos(2nπxL))dx=L23−1L2nπ∫0(Ly2nπ)2cos(y)L2nπdy=L23−1L(L2nπ)32nπ∫0y2cos(y)dy=L23−1L(L2nπ)3(t2sint+2tcost−2sint)|2nπ0=L23−1L(L2nπ)3(4nπ)=L2(13−2(2nπ)2)
Therefore the expectation of the position squared operator is L2(13−2(2nπ)2)
No comments:
Post a Comment