As part of Exploring Quantum Physics - I need to evaluate this integral. Turn out an exercise I did sometimes ago give this as a special case.
An intermediate result of that exercise is this:
∫tne−atdt=(1a)nn!e−at−a−1ae−atn−1∑k=0n!tn−kak(n−k)!
Given this result, we substitute a=−i , we can simplify this to:
∫tneitdt=(1−i)nn!eiti−1−ieitn−1∑k=0n!tn−k(−i)k(n−k)!=in−1n!eit+eitn−1∑k=0ik+3n!tn−k(n−k)!
In particular, we are interested in n=1 and n=2.
∫t1eitdt=i1−11!eit+eit1−1∑k=0ik+31!t1−k(1−k)!=eit+eiti0+31!t1−0(1−0)!=eit−iteit=eit(−it+1)∫t2eitdt=in−1n!eit+eitn−1∑k=0ik+3n!tn−k(n−k)!=i2−12!eit+eit2−1∑k=0ik+32!t2−k(2−k)!=2ieit+eit(i0+32!t2−0(2−0)!+i1+32!t2−1(2−1)!)=2ieit+eit(−it2+2t)=eit(−it2+2t+2i)
Using Euler's identity we can now write:
∫teitdt=eit(−it+it)∫t(cost+isint)dt=(cost+isint)(−it+1)=(tsint+cost)+i(−tcost+sint)∫t2eitdt=eit(−it2+2t+2i)∫t2(cost+isint)dt=(cost+isint)(−it2+2t+2i)=(t2sint+2tcost−2sint)+i(−t2cost+2tsint+2cost)
Equating the real parts and imaginary parts we get these equations:
An intermediate result of that exercise is this:
∫tne−atdt=(1a)nn!e−at−a−1ae−atn−1∑k=0n!tn−kak(n−k)!
Given this result, we substitute a=−i , we can simplify this to:
∫tneitdt=(1−i)nn!eiti−1−ieitn−1∑k=0n!tn−k(−i)k(n−k)!=in−1n!eit+eitn−1∑k=0ik+3n!tn−k(n−k)!
In particular, we are interested in n=1 and n=2.
∫t1eitdt=i1−11!eit+eit1−1∑k=0ik+31!t1−k(1−k)!=eit+eiti0+31!t1−0(1−0)!=eit−iteit=eit(−it+1)∫t2eitdt=in−1n!eit+eitn−1∑k=0ik+3n!tn−k(n−k)!=i2−12!eit+eit2−1∑k=0ik+32!t2−k(2−k)!=2ieit+eit(i0+32!t2−0(2−0)!+i1+32!t2−1(2−1)!)=2ieit+eit(−it2+2t)=eit(−it2+2t+2i)
Using Euler's identity we can now write:
∫teitdt=eit(−it+it)∫t(cost+isint)dt=(cost+isint)(−it+1)=(tsint+cost)+i(−tcost+sint)∫t2eitdt=eit(−it2+2t+2i)∫t2(cost+isint)dt=(cost+isint)(−it2+2t+2i)=(t2sint+2tcost−2sint)+i(−t2cost+2tsint+2cost)
Equating the real parts and imaginary parts we get these equations:
- ∫tcostdt=tsint+cost
- ∫tsintdt=−tcost+sint
- ∫t2costdt=t2sint+2tcost−2sint
- ∫t2sintdt=−t2cost+2tsint+2cost
No comments:
Post a Comment