online advertising
Loading [MathJax]/jax/output/HTML-CSS/jax.js

Sunday, April 19, 2015

Exploring Quantum Physics - computing a few trigonometric integrals

As part of Exploring Quantum Physics - I need to evaluate this integral. Turn out an exercise I did sometimes ago give this as a special case.

An intermediate result of that exercise is this:

tneatdt=(1a)nn!eata1aeatn1k=0n!tnkak(nk)!

Given this result, we substitute a=i , we can simplify this to:

tneitdt=(1i)nn!eiti1ieitn1k=0n!tnk(i)k(nk)!=in1n!eit+eitn1k=0ik+3n!tnk(nk)!

In particular, we are interested in n=1 and n=2.

t1eitdt=i111!eit+eit11k=0ik+31!t1k(1k)!=eit+eiti0+31!t10(10)!=eititeit=eit(it+1)t2eitdt=in1n!eit+eitn1k=0ik+3n!tnk(nk)!=i212!eit+eit21k=0ik+32!t2k(2k)!=2ieit+eit(i0+32!t20(20)!+i1+32!t21(21)!)=2ieit+eit(it2+2t)=eit(it2+2t+2i)

Using Euler's identity we can now write:

teitdt=eit(it+it)t(cost+isint)dt=(cost+isint)(it+1)=(tsint+cost)+i(tcost+sint)t2eitdt=eit(it2+2t+2i)t2(cost+isint)dt=(cost+isint)(it2+2t+2i)=(t2sint+2tcost2sint)+i(t2cost+2tsint+2cost)

Equating the real parts and imaginary parts we get these equations:

  • tcostdt=tsint+cost
  • tsintdt=tcost+sint
  • t2costdt=t2sint+2tcost2sint
  • t2sintdt=t2cost+2tsint+2cost


No comments:

Post a Comment