Question 5 is a hard question, so we will deal with it in parts. In the fourth part we computes the expectation of momentum squared, it is similar to the previous calculation by not quite.
⟨p2⟩=L∫0ψ(x,t)∗iℏ∂∂x(iℏ∂∂xψ(x,t))dx=−ℏ2L∫0ψ(x,t)∗∂2∂x2ψ(x,t))dx=−ℏ2L∫0(√2Lsin(nπxL)e−iEntℏ)∗∂2∂x2(√2Lsin(nπxL)e−iEntℏ)dx=−ℏ2L∫0(√2Lsin(nπxL)eiEntℏ)∂2∂x2(√2Lsin(nπxL)e−iEntℏ)dx=−ℏ2L∫0(√2Lsin(nπxL))∂2∂x2(√2Lsin(nπxL))dx=−ℏ2L∫0(√2Lsin(nπxL))(−(nπL)2)(√2Lsin(nπxL))dx=2n2ℏ2π2L3L∫0sin2(nπxL)dx
We let y=2nπxL, when x=0, we have y=0, when x=L, we have y=2nπ, lastly dy=2nπLdx.
⟨p2⟩=2n2ℏ2π2L3L∫0sin2(nπxL)dx=2n2ℏ2π2L32nπ∫0sin2(y)L2nπdy=nℏ2πL22nπ∫0sin2(y)dy=nℏ2πL22nπ∫01−cos(2y)2dy=nℏ2π2L22nπ∫0(1−cos(2y))dy=nℏ2π2L2(y−sin(2y)|2nπ0=n2ℏ2π2L2
Therefore the expectation of the momentum squared operator is n2ℏ2π2L2
⟨p2⟩=L∫0ψ(x,t)∗iℏ∂∂x(iℏ∂∂xψ(x,t))dx=−ℏ2L∫0ψ(x,t)∗∂2∂x2ψ(x,t))dx=−ℏ2L∫0(√2Lsin(nπxL)e−iEntℏ)∗∂2∂x2(√2Lsin(nπxL)e−iEntℏ)dx=−ℏ2L∫0(√2Lsin(nπxL)eiEntℏ)∂2∂x2(√2Lsin(nπxL)e−iEntℏ)dx=−ℏ2L∫0(√2Lsin(nπxL))∂2∂x2(√2Lsin(nπxL))dx=−ℏ2L∫0(√2Lsin(nπxL))(−(nπL)2)(√2Lsin(nπxL))dx=2n2ℏ2π2L3L∫0sin2(nπxL)dx
We let y=2nπxL, when x=0, we have y=0, when x=L, we have y=2nπ, lastly dy=2nπLdx.
⟨p2⟩=2n2ℏ2π2L3L∫0sin2(nπxL)dx=2n2ℏ2π2L32nπ∫0sin2(y)L2nπdy=nℏ2πL22nπ∫0sin2(y)dy=nℏ2πL22nπ∫01−cos(2y)2dy=nℏ2π2L22nπ∫0(1−cos(2y))dy=nℏ2π2L2(y−sin(2y)|2nπ0=n2ℏ2π2L2
Therefore the expectation of the momentum squared operator is n2ℏ2π2L2
No comments:
Post a Comment