Question 5 is a hard question, so we will deal with it in parts. In the third part we computes the expectation of momentum, it is similar to the previous calculation by not quite.
⟨p⟩=L∫0ψ(x,t)∗iℏ∂∂xψ(x,t)dx=L∫0(√2Lsin(nπxL)e−iEntℏ)∗iℏ∂∂x(√2Lsin(nπxL)e−iEntℏ)dx=L∫0(√2Lsin(nπxL)eiEntℏ)iℏ∂∂x(√2Lsin(nπxL)e−iEntℏ)dx=L∫0(√2Lsin(nπxL))iℏ∂∂x(√2Lsin(nπxL))dx=L∫0(√2Lsin(nπxL))iℏnπL(√2Lcos(nπxL))dx=2iℏnπL2L∫0sin(nπxL)cos(nπxL)dx=2iℏnπL2L∫012sin(2nπxL)dx=iℏnπL2L∫0sin(2nπxL)dx=iℏnπL2(L2nπ)cos(2nπxL)|L0=0
Therefore the expectation of the momentum operator is 0, that of course doesn't mean the particle is not moving, it merely means the average velocity is 0, that is, it is not drifting left or right.
⟨p⟩=L∫0ψ(x,t)∗iℏ∂∂xψ(x,t)dx=L∫0(√2Lsin(nπxL)e−iEntℏ)∗iℏ∂∂x(√2Lsin(nπxL)e−iEntℏ)dx=L∫0(√2Lsin(nπxL)eiEntℏ)iℏ∂∂x(√2Lsin(nπxL)e−iEntℏ)dx=L∫0(√2Lsin(nπxL))iℏ∂∂x(√2Lsin(nπxL))dx=L∫0(√2Lsin(nπxL))iℏnπL(√2Lcos(nπxL))dx=2iℏnπL2L∫0sin(nπxL)cos(nπxL)dx=2iℏnπL2L∫012sin(2nπxL)dx=iℏnπL2L∫0sin(2nπxL)dx=iℏnπL2(L2nπ)cos(2nπxL)|L0=0
Therefore the expectation of the momentum operator is 0, that of course doesn't mean the particle is not moving, it merely means the average velocity is 0, that is, it is not drifting left or right.
No comments:
Post a Comment