Question:
What is the Gaussian variational estimate of the ground state energy for the following potential:
ˆHΨ(→r)=−ℏ22μ∇2Ψ(→r)+krΨ(→r)=EΨ(→r)
Solution:
I see this as the climax of the whole exam. The original problem statement has a lot of other hints, but I still get this wrong due to some inaccuracy.
First, we substitute the standard Gaussian to the kinetic energy term. I've got inaccuracy here so the whole problem is wrong. So let's do that here again.
−ℏ22μ∇2Ψ(→r)=−ℏ22μ∇21π3/4d3/2exp(−r22d2)=−ℏ22μ∇21π3/4d3/2exp(−r21+r22+r232d2)=−ℏ22μπ3/4d3/2∇2exp(−r21+r22+r232d2)=−ℏ22μπ3/4d3/2∇⋅(−r1d2,−r2d2,−r3d2)exp(−r21+r22+r232d2)=−ℏ22μπ3/4d3/2(r21d4−1d2+r22d4−1d2+r23d4−1d2)exp(−r21+r22+r232d2)=−ℏ22μπ3/4d3/2(r21d4+r22d4+r23d4−3d2)exp(−r21+r22+r232d2)
To find the energy, we do an integration
⟨T⟩=∞∫−∞1π3/4d3/2exp(−r22d2)(−ℏ22μπ3/4d3/2(r21d4+r22d4+r23d4−3d2)exp(−r21+r22+r232d2))dV=∞∫−∞1π3/4d3/2exp(−r21+r22+r232d2)(−ℏ22μπ3/4d3/2(r21d4+r22d4+r23d4−3d2)exp(−r21+r22+r232d2))dV=−1π3/4d3/2ℏ22μπ3/4d3/2∞∫−∞exp(−r21+r22+r232d2)((r21d4+r22d4+r23d4−3d2)exp(−r21+r22+r232d2))dV=−ℏ22μπ3/2d3∞∫−∞((r21d4+r22d4+r23d4−3d2)exp(−r21+r22+r23d2))dV=−ℏ22μπ3/2d5∞∫−∞((r21d2+r22d2+r23d2−3)exp(−r21+r22+r23d2))dV=−ℏ22μπ3/2d5∞∫−∞((r21d2+r22d2+r23d2)exp(−r21+r22+r23d2))dV+ℏ22μπ3/2d5∞∫−∞(3exp(−r21+r22+r23d2))dV=−ℏ22μπ3/2d7∞∫−∞((r21+r22+r23)exp(−r21+r22+r23d2))dV+ℏ22μπ3/2d5∞∫−∞(3exp(−r21+r22+r23d2))dV
In this form, we can see this is a Gaussian variance integral. We know that ∞∫−∞1√2πσ2e−x22σ2dx=1 and ∞∫−∞x21√2πσ2e−x22σ2dx=σ2, so we can compute the basic integrals as follow:
With these basic integral - computing ⟨T⟩ becomes a substitution exercise. The above are triple integrals and therefore we turn it into iterated integral and compute them.
⟨T⟩=−ℏ22μπ3/2d7∞∫−∞((r21+r22+r23)exp(−r21+r22+r23d2))dV+ℏ22μπ3/2d5∞∫−∞(3exp(−r21+r22+r23d2))dV=−ℏ22μπ3/2d7(3√πd32√πd√πd)+ℏ22μπ3/2d5(3√πd√πd√πd)=−3ℏ24μd2+3ℏ22μd2=3ℏ24μd2
Next we move on an compute ⟨V⟩, another integral
⟨V⟩=∞∫−∞Ψ∗krΨdV=∞∫−∞1π3/4d3/2exp(−r22d2)kr1π3/4d3/2exp(−r22d2)dV=1π3/2d3∞∫−∞exp(−r22d2)krexp(−r22d2)dV=1π3/2d3∞∫−∞krexp(−r2d2)dV
Despite the deceptive simplicity in the formula, it is a triple integral with r being the length of the vector. Now it make sense to convert this to spherical coordinates.
=1π3/2d34π∞∫−∞kr3exp(−r2d2)dr
Let we let s=r2d2, ds=2rd2dr, so we further simplify this to
=1π3/2d34π∞∫−∞kr3exp(−s)dr=1π3/2d34π∞∫−∞kr3d22rexp(−s)ds=1π3/2d34π∞∫−∞kr2d22exp(−s)ds=1π3/2d34π∞∫−∞kr2d42d2exp(−s)ds=1π3/2d34πkd42∞∫−∞sexp(−s)ds=2kdπ1/2∞∫−∞sexp(−s)ds=2kdπ1/2Γ(2)=2kdπ1/2
So the total energy is ⟨T⟩+⟨V⟩=3ℏ24μd2+2kdπ1/2. To estimate the ground state we would want to minimize it.
0=ddd(⟨T⟩+⟨V⟩)=ddd(3ℏ24μd2+2kdπ1/2)=3(−2)ℏ24μd3+2kπ1/23(2)ℏ24μd3=2kπ1/2d3=3(2)ℏ2π1/24(2k)μ=3ℏ2π1/24kμ
Finally, we substitute this back into the energy expression
⟨T⟩+⟨V⟩=3ℏ24μd2+2kdπ1/2=3ℏ2d4μd3+2kdπ1/2=3ℏ2d4μ(3ℏ2π1/24kμ)+2kdπ1/2=kdπ1/2+2kdπ1/2=3kdπ1/2=3kπ1/2(3ℏ2π1/24kμ)1/3=(81k3ℏ2π1/24kμπ3/2)1/3=(81k2ℏ24πμ)1/3=(814π)1/3(ℏ2k2μ)1/3
Phew - that's it! What a climax.
What is the Gaussian variational estimate of the ground state energy for the following potential:
ˆHΨ(→r)=−ℏ22μ∇2Ψ(→r)+krΨ(→r)=EΨ(→r)
Solution:
I see this as the climax of the whole exam. The original problem statement has a lot of other hints, but I still get this wrong due to some inaccuracy.
First, we substitute the standard Gaussian to the kinetic energy term. I've got inaccuracy here so the whole problem is wrong. So let's do that here again.
−ℏ22μ∇2Ψ(→r)=−ℏ22μ∇21π3/4d3/2exp(−r22d2)=−ℏ22μ∇21π3/4d3/2exp(−r21+r22+r232d2)=−ℏ22μπ3/4d3/2∇2exp(−r21+r22+r232d2)=−ℏ22μπ3/4d3/2∇⋅(−r1d2,−r2d2,−r3d2)exp(−r21+r22+r232d2)=−ℏ22μπ3/4d3/2(r21d4−1d2+r22d4−1d2+r23d4−1d2)exp(−r21+r22+r232d2)=−ℏ22μπ3/4d3/2(r21d4+r22d4+r23d4−3d2)exp(−r21+r22+r232d2)
To find the energy, we do an integration
⟨T⟩=∞∫−∞1π3/4d3/2exp(−r22d2)(−ℏ22μπ3/4d3/2(r21d4+r22d4+r23d4−3d2)exp(−r21+r22+r232d2))dV=∞∫−∞1π3/4d3/2exp(−r21+r22+r232d2)(−ℏ22μπ3/4d3/2(r21d4+r22d4+r23d4−3d2)exp(−r21+r22+r232d2))dV=−1π3/4d3/2ℏ22μπ3/4d3/2∞∫−∞exp(−r21+r22+r232d2)((r21d4+r22d4+r23d4−3d2)exp(−r21+r22+r232d2))dV=−ℏ22μπ3/2d3∞∫−∞((r21d4+r22d4+r23d4−3d2)exp(−r21+r22+r23d2))dV=−ℏ22μπ3/2d5∞∫−∞((r21d2+r22d2+r23d2−3)exp(−r21+r22+r23d2))dV=−ℏ22μπ3/2d5∞∫−∞((r21d2+r22d2+r23d2)exp(−r21+r22+r23d2))dV+ℏ22μπ3/2d5∞∫−∞(3exp(−r21+r22+r23d2))dV=−ℏ22μπ3/2d7∞∫−∞((r21+r22+r23)exp(−r21+r22+r23d2))dV+ℏ22μπ3/2d5∞∫−∞(3exp(−r21+r22+r23d2))dV
In this form, we can see this is a Gaussian variance integral. We know that ∞∫−∞1√2πσ2e−x22σ2dx=1 and ∞∫−∞x21√2πσ2e−x22σ2dx=σ2, so we can compute the basic integrals as follow:
∞∫−∞exp(−x2d2)dx=∞∫−∞exp(−x22(12)d2)dx=∞∫−∞exp(−x22(1√2)2d2)dx=∞∫−∞exp(−x22(d√2)2)dx=√2π(d√2)21√2π(d√2)2∞∫−∞exp(−x22(d√2)2)dx=√2π(d√2)2=√πd | ∞∫−∞x2exp(−x2d2)dx=∞∫−∞x2exp(−x22(12)d2)dx=∞∫−∞x2exp(−x22(1√2)2d2)dx=∞∫−∞x2exp(−x22(d√2)2)dx=√2π(d√2)21√2π(d√2)2∞∫−∞x2exp(−x22(d√2)2)dx=√2π(d√2)2(d√2)2=√πd32 |
With these basic integral - computing ⟨T⟩ becomes a substitution exercise. The above are triple integrals and therefore we turn it into iterated integral and compute them.
⟨T⟩=−ℏ22μπ3/2d7∞∫−∞((r21+r22+r23)exp(−r21+r22+r23d2))dV+ℏ22μπ3/2d5∞∫−∞(3exp(−r21+r22+r23d2))dV=−ℏ22μπ3/2d7(3√πd32√πd√πd)+ℏ22μπ3/2d5(3√πd√πd√πd)=−3ℏ24μd2+3ℏ22μd2=3ℏ24μd2
Next we move on an compute ⟨V⟩, another integral
⟨V⟩=∞∫−∞Ψ∗krΨdV=∞∫−∞1π3/4d3/2exp(−r22d2)kr1π3/4d3/2exp(−r22d2)dV=1π3/2d3∞∫−∞exp(−r22d2)krexp(−r22d2)dV=1π3/2d3∞∫−∞krexp(−r2d2)dV
Despite the deceptive simplicity in the formula, it is a triple integral with r being the length of the vector. Now it make sense to convert this to spherical coordinates.
=1π3/2d34π∞∫−∞kr3exp(−r2d2)dr
Let we let s=r2d2, ds=2rd2dr, so we further simplify this to
=1π3/2d34π∞∫−∞kr3exp(−s)dr=1π3/2d34π∞∫−∞kr3d22rexp(−s)ds=1π3/2d34π∞∫−∞kr2d22exp(−s)ds=1π3/2d34π∞∫−∞kr2d42d2exp(−s)ds=1π3/2d34πkd42∞∫−∞sexp(−s)ds=2kdπ1/2∞∫−∞sexp(−s)ds=2kdπ1/2Γ(2)=2kdπ1/2
So the total energy is ⟨T⟩+⟨V⟩=3ℏ24μd2+2kdπ1/2. To estimate the ground state we would want to minimize it.
0=ddd(⟨T⟩+⟨V⟩)=ddd(3ℏ24μd2+2kdπ1/2)=3(−2)ℏ24μd3+2kπ1/23(2)ℏ24μd3=2kπ1/2d3=3(2)ℏ2π1/24(2k)μ=3ℏ2π1/24kμ
Finally, we substitute this back into the energy expression
⟨T⟩+⟨V⟩=3ℏ24μd2+2kdπ1/2=3ℏ2d4μd3+2kdπ1/2=3ℏ2d4μ(3ℏ2π1/24kμ)+2kdπ1/2=kdπ1/2+2kdπ1/2=3kdπ1/2=3kπ1/2(3ℏ2π1/24kμ)1/3=(81k3ℏ2π1/24kμπ3/2)1/3=(81k2ℏ24πμ)1/3=(814π)1/3(ℏ2k2μ)1/3
Phew - that's it! What a climax.
No comments:
Post a Comment