Question:
What is the exact energy?
Solution:
To solve the equation, we use a substitution z=ζ−z0.
−ℏ22md2Ψdz2+mω22z2Ψ+mgzΨ=EexactΨ−ℏ22md2Ψdζ2+mω22(ζ−z0)2Ψ+mg(ζ−z0)Ψ=EexactΨ−ℏ22md2Ψdζ2+mω22(ζ2−2ζz0+z20)Ψ+mg(ζ−z0)Ψ=EexactΨ
Now we see a convenient choice for z0 would be gω2, because that would give
−ℏ22md2Ψdζ2+mω22(ζ2−2ζz0+z20)Ψ+mg(ζ−z0)Ψ=EexactΨ−ℏ22md2Ψdζ2+mω22(ζ2−2ζgω2+z20)Ψ+mg(ζ−z0)Ψ=EexactΨ−ℏ22md2Ψdζ2+mω22(ζ2+z20)Ψ−mgz0Ψ=EexactΨ−ℏ22md2Ψdζ2+mω22ζ2Ψ=(Eexact+mgz0−mω22z20)Ψ
Therefore, for ground state, we have ,.
hω2=Eexact+mgz0−mω22z20Eexact=hω2−mgz0+mω22z20=hω2−mggω2+mω22(gω2)2=hω2−mg2ω2+mω2g22ω4=hω2−mg2ω2+mg22ω2=hω2−mg22ω2
What is the exact energy?
Solution:
To solve the equation, we use a substitution z=ζ−z0.
−ℏ22md2Ψdz2+mω22z2Ψ+mgzΨ=EexactΨ−ℏ22md2Ψdζ2+mω22(ζ−z0)2Ψ+mg(ζ−z0)Ψ=EexactΨ−ℏ22md2Ψdζ2+mω22(ζ2−2ζz0+z20)Ψ+mg(ζ−z0)Ψ=EexactΨ
Now we see a convenient choice for z0 would be gω2, because that would give
−ℏ22md2Ψdζ2+mω22(ζ2−2ζz0+z20)Ψ+mg(ζ−z0)Ψ=EexactΨ−ℏ22md2Ψdζ2+mω22(ζ2−2ζgω2+z20)Ψ+mg(ζ−z0)Ψ=EexactΨ−ℏ22md2Ψdζ2+mω22(ζ2+z20)Ψ−mgz0Ψ=EexactΨ−ℏ22md2Ψdζ2+mω22ζ2Ψ=(Eexact+mgz0−mω22z20)Ψ
Therefore, for ground state, we have ,.
hω2=Eexact+mgz0−mω22z20Eexact=hω2−mgz0+mω22z20=hω2−mggω2+mω22(gω2)2=hω2−mg2ω2+mω2g22ω4=hω2−mg2ω2+mg22ω2=hω2−mg22ω2
No comments:
Post a Comment