online advertising
Loading [MathJax]/jax/output/HTML-CSS/jax.js

Sunday, May 17, 2015

Exploring Quantum Physics - Week 7 Question 6

Question:

What is the exact energy?

Solution:

To solve the equation, we use a substitution z=ζz0.

22md2Ψdz2+mω22z2Ψ+mgzΨ=EexactΨ22md2Ψdζ2+mω22(ζz0)2Ψ+mg(ζz0)Ψ=EexactΨ22md2Ψdζ2+mω22(ζ22ζz0+z20)Ψ+mg(ζz0)Ψ=EexactΨ

Now we see a convenient choice for z0 would be gω2, because that would give

22md2Ψdζ2+mω22(ζ22ζz0+z20)Ψ+mg(ζz0)Ψ=EexactΨ22md2Ψdζ2+mω22(ζ22ζgω2+z20)Ψ+mg(ζz0)Ψ=EexactΨ22md2Ψdζ2+mω22(ζ2+z20)Ψmgz0Ψ=EexactΨ22md2Ψdζ2+mω22ζ2Ψ=(Eexact+mgz0mω22z20)Ψ

Therefore, for ground state, we have ,.

hω2=Eexact+mgz0mω22z20Eexact=hω2mgz0+mω22z20=hω2mggω2+mω22(gω2)2=hω2mg2ω2+mω2g22ω4=hω2mg2ω2+mg22ω2=hω2mg22ω2

No comments:

Post a Comment