Question:
Prove that −l≤m≤l for |lm⟩ is both an eigenvector of L2 and L3.
Solution:
Thanks Gang Xu for the ladder operator hint.
L3L±|lm⟩=(L±L3−L±L3+L3L±)|lm⟩=(L±L3+L3L±−L±L3)|lm⟩=(L±L3+[L3,L±])|lm⟩=(L±L3+±ℏL±)|lm⟩=(L±ℏm+±ℏL±)|lm⟩=ℏ(m±1)L±|lm⟩
To proceed, we need to know one more identity
L−L+=(L1−iL2)(L1+iL2)=(L21−iL2L1+iL1L2+L22)=(L21+L22)+iL1L2−iL2L1=(L21+L22)+i[L1,L2]=(L21+L22)+i(iℏL3)=(L21+L22)−ℏL3=L2−L23−ℏL3
So we can combine the two identities into a single one L±L∓=L2−L23±ℏL3. Now we can efficiently do both at the same time
L2L±|lm⟩=(L±L∓+L23∓ℏL3)L±|lm⟩=(L±L∓L±+L23L±∓ℏL3L±)|lm⟩=(L±(L2−L23∓ℏL3)+L23L±∓ℏL3L±)|lm⟩=(L±(L2−L23∓ℏL3)+L23L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−L23∓ℏL3)+L3ℏ(m±1)L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−L23∓ℏL3)+ℏ(m±1)L3L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−L23∓ℏL3)+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−L23∓ℏ2m)+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−L3ℏm∓ℏ2m)+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−ℏmL3∓ℏ2m)+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−ℏ2m2∓ℏ2m)+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=(L±(ℏ2l(l+1)−ℏ2m2∓ℏ2m)+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=((ℏ2l(l+1)−ℏ2m2∓ℏ2m)L±+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=(ℏ2l(l+1)−ℏ2m2∓ℏ2m+ℏ2(m±1)2∓ℏ2(m±1))L±|lm⟩=ℏ2(l(l+1)−m2∓m+(m±1)2∓(m±1))L±|lm⟩=ℏ2(l(l+1)−m2∓m+m2±2m+1∓(m±1))L±|lm⟩=ℏ2(l(l+1)∓m±2m+1∓(m±1))L±|lm⟩=ℏ2(l(l+1))L±|lm⟩
The last equality comes from just plus or minus sign case study - they will all cancel in either case. In retrospect - this result is not surprising, as L2 is supposed to commute with L1 and L2. That is so far I can go.
Prove that −l≤m≤l for |lm⟩ is both an eigenvector of L2 and L3.
Solution:
Thanks Gang Xu for the ladder operator hint.
L3L±|lm⟩=(L±L3−L±L3+L3L±)|lm⟩=(L±L3+L3L±−L±L3)|lm⟩=(L±L3+[L3,L±])|lm⟩=(L±L3+±ℏL±)|lm⟩=(L±ℏm+±ℏL±)|lm⟩=ℏ(m±1)L±|lm⟩
To proceed, we need to know one more identity
L−L+=(L1−iL2)(L1+iL2)=(L21−iL2L1+iL1L2+L22)=(L21+L22)+iL1L2−iL2L1=(L21+L22)+i[L1,L2]=(L21+L22)+i(iℏL3)=(L21+L22)−ℏL3=L2−L23−ℏL3
So we can combine the two identities into a single one L±L∓=L2−L23±ℏL3. Now we can efficiently do both at the same time
L2L±|lm⟩=(L±L∓+L23∓ℏL3)L±|lm⟩=(L±L∓L±+L23L±∓ℏL3L±)|lm⟩=(L±(L2−L23∓ℏL3)+L23L±∓ℏL3L±)|lm⟩=(L±(L2−L23∓ℏL3)+L23L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−L23∓ℏL3)+L3ℏ(m±1)L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−L23∓ℏL3)+ℏ(m±1)L3L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−L23∓ℏL3)+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−L23∓ℏ2m)+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−L3ℏm∓ℏ2m)+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−ℏmL3∓ℏ2m)+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=(L±(L2−ℏ2m2∓ℏ2m)+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=(L±(ℏ2l(l+1)−ℏ2m2∓ℏ2m)+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=((ℏ2l(l+1)−ℏ2m2∓ℏ2m)L±+ℏ2(m±1)2L±∓ℏ2(m±1)L±)|lm⟩=(ℏ2l(l+1)−ℏ2m2∓ℏ2m+ℏ2(m±1)2∓ℏ2(m±1))L±|lm⟩=ℏ2(l(l+1)−m2∓m+(m±1)2∓(m±1))L±|lm⟩=ℏ2(l(l+1)−m2∓m+m2±2m+1∓(m±1))L±|lm⟩=ℏ2(l(l+1)∓m±2m+1∓(m±1))L±|lm⟩=ℏ2(l(l+1))L±|lm⟩
The last equality comes from just plus or minus sign case study - they will all cancel in either case. In retrospect - this result is not surprising, as L2 is supposed to commute with L1 and L2. That is so far I can go.
No comments:
Post a Comment