online advertising
Loading [MathJax]/jax/output/HTML-CSS/jax.js

Thursday, May 14, 2015

Exploring Quantum Physics - Week 6 Bonus Question

Question:

Prove that lml for |lm is both an eigenvector of L2 and L3.

Solution:

Thanks Gang Xu for the ladder operator hint.

L3L±|lm=(L±L3L±L3+L3L±)|lm=(L±L3+L3L±L±L3)|lm=(L±L3+[L3,L±])|lm=(L±L3+±L±)|lm=(L±m+±L±)|lm=(m±1)L±|lm

To proceed, we need to know one more identity

LL+=(L1iL2)(L1+iL2)=(L21iL2L1+iL1L2+L22)=(L21+L22)+iL1L2iL2L1=(L21+L22)+i[L1,L2]=(L21+L22)+i(iL3)=(L21+L22)L3=L2L23L3

So we can combine the two identities into a single one L±L=L2L23±L3. Now we can efficiently do both at the same time

L2L±|lm=(L±L+L23L3)L±|lm=(L±LL±+L23L±L3L±)|lm=(L±(L2L23L3)+L23L±L3L±)|lm=(L±(L2L23L3)+L23L±2(m±1)L±)|lm=(L±(L2L23L3)+L3(m±1)L±2(m±1)L±)|lm=(L±(L2L23L3)+(m±1)L3L±2(m±1)L±)|lm=(L±(L2L23L3)+2(m±1)2L±2(m±1)L±)|lm=(L±(L2L232m)+2(m±1)2L±2(m±1)L±)|lm=(L±(L2L3m2m)+2(m±1)2L±2(m±1)L±)|lm=(L±(L2mL32m)+2(m±1)2L±2(m±1)L±)|lm=(L±(L22m22m)+2(m±1)2L±2(m±1)L±)|lm=(L±(2l(l+1)2m22m)+2(m±1)2L±2(m±1)L±)|lm=((2l(l+1)2m22m)L±+2(m±1)2L±2(m±1)L±)|lm=(2l(l+1)2m22m+2(m±1)22(m±1))L±|lm=2(l(l+1)m2m+(m±1)2(m±1))L±|lm=2(l(l+1)m2m+m2±2m+1(m±1))L±|lm=2(l(l+1)m±2m+1(m±1))L±|lm=2(l(l+1))L±|lm

The last equality comes from just plus or minus sign case study - they will all cancel in either case. In retrospect - this result is not surprising, as L2 is supposed to commute with L1 and L2. That is so far I can go.

No comments:

Post a Comment