online advertising

Sunday, May 24, 2015

Exploring Quantum Physics - Final Exam Part 1 Question 8

Question:

What are the eigen energies for this system?

ˆH=22md2dx2+12mω2x2qEx

Solution:

Using the given substitution z=xqEω2m, we have

(22md2dx2+12mω2x2qEx)ψ(x)=Eψ(x)(22md2dz2+12mω2(z+qEω2m)2qE(z+qEω2m))ψ(z+qEω2m)=Eψ(z+qEω2m)(22md2dz2+12mω2(z+qEω2m)2qEzq2E2ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(22md2dz2+12mω2(z2+2zqEω2m+(qEω2m)2)qEzq2E2ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(22md2dz2+12mω2z2+qEz+q2E22ω2mqEzq2E2ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(22md2dz2+12mω2z2+q2E22ω2mq2E2ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(22md2dz2+12mω2z2q2E22ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(22md2dz2+12mω2z2)ψ(z+qEω2m)=(E+q2E22ω2m)ψ(z+qEω2m)

Now we know E+q2E22ω2m=ω(n+12), in other words, E=ω(n+12)q2E22ω2m

No comments:

Post a Comment