Question:
What are the eigen energies for this system?
ˆH=−ℏ22md2dx2+12mω2x2−qEx
Solution:
Using the given substitution z=x−qEω2m, we have
(−ℏ22md2dx2+12mω2x2−qEx)ψ(x)=Eψ(x)(−ℏ22md2dz2+12mω2(z+qEω2m)2−qE(z+qEω2m))ψ(z+qEω2m)=Eψ(z+qEω2m)(−ℏ22md2dz2+12mω2(z+qEω2m)2−qEz−q2E2ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(−ℏ22md2dz2+12mω2(z2+2zqEω2m+(qEω2m)2)−qEz−q2E2ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(−ℏ22md2dz2+12mω2z2+qEz+q2E22ω2m−qEz−q2E2ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(−ℏ22md2dz2+12mω2z2+q2E22ω2m−q2E2ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(−ℏ22md2dz2+12mω2z2−q2E22ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(−ℏ22md2dz2+12mω2z2)ψ(z+qEω2m)=(E+q2E22ω2m)ψ(z+qEω2m)
Now we know E+q2E22ω2m=ℏω(n+12), in other words, E=ℏω(n+12)−q2E22ω2m
What are the eigen energies for this system?
ˆH=−ℏ22md2dx2+12mω2x2−qEx
Solution:
Using the given substitution z=x−qEω2m, we have
(−ℏ22md2dx2+12mω2x2−qEx)ψ(x)=Eψ(x)(−ℏ22md2dz2+12mω2(z+qEω2m)2−qE(z+qEω2m))ψ(z+qEω2m)=Eψ(z+qEω2m)(−ℏ22md2dz2+12mω2(z+qEω2m)2−qEz−q2E2ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(−ℏ22md2dz2+12mω2(z2+2zqEω2m+(qEω2m)2)−qEz−q2E2ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(−ℏ22md2dz2+12mω2z2+qEz+q2E22ω2m−qEz−q2E2ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(−ℏ22md2dz2+12mω2z2+q2E22ω2m−q2E2ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(−ℏ22md2dz2+12mω2z2−q2E22ω2m)ψ(z+qEω2m)=Eψ(z+qEω2m)(−ℏ22md2dz2+12mω2z2)ψ(z+qEω2m)=(E+q2E22ω2m)ψ(z+qEω2m)
Now we know E+q2E22ω2m=ℏω(n+12), in other words, E=ℏω(n+12)−q2E22ω2m
No comments:
Post a Comment