Question:
Compute the root mean square of electron velocity in ground state quantized motion under the Earth's constant magnetic field.
Solution:
The problem seems daunting at first. But experience tell me once again this is most likely just number substituting exercise, so let's try expanding ˆa†ˆa and see what is going on there.
ˆa†ˆa=m2ℏω(^v1−i^v2)(^v1+i^v2)=m2ℏω(^v12+^v22+i[^v1,^v2])=m2ℏω(^v12+^v22+i(iℏωm))=m2ℏω(^v12+^v22−ℏωm)
So we can expand H2D as follow:
H2D=ℏω(ˆa†ˆa+12)=ℏω(m2ℏω(^v12+^v22−ℏωm)+12)=m2(^v12+^v22−ℏωm)+ℏω2=m2(^v12+^v22)−ℏω2+ℏω2=m2(^v12+^v22)
Now we will equate the ground state energies
ϵ0|ψ0⟩=H2D|ψ0⟩⟨ψ0|ϵ0|ψ0⟩=⟨ψ0|H2D|ψ0⟩ϵ0⟨ψ0|ψ0⟩=⟨ψ0|H2D|ψ0⟩ϵ0=⟨ψ0|H2D|ψ0⟩hω2=⟨ψ0|H2D|ψ0⟩hω2=⟨ψ0|m2(^v12+^v22)|ψ0⟩hω2=m2⟨ψ0|(^v12+^v22)|ψ0⟩hωm=⟨ψ0|(^v12+^v22)|ψ0⟩
Last but not least, the actual value root mean square value is 32.15.
Compute the root mean square of electron velocity in ground state quantized motion under the Earth's constant magnetic field.
Solution:
The problem seems daunting at first. But experience tell me once again this is most likely just number substituting exercise, so let's try expanding ˆa†ˆa and see what is going on there.
ˆa†ˆa=m2ℏω(^v1−i^v2)(^v1+i^v2)=m2ℏω(^v12+^v22+i[^v1,^v2])=m2ℏω(^v12+^v22+i(iℏωm))=m2ℏω(^v12+^v22−ℏωm)
So we can expand H2D as follow:
H2D=ℏω(ˆa†ˆa+12)=ℏω(m2ℏω(^v12+^v22−ℏωm)+12)=m2(^v12+^v22−ℏωm)+ℏω2=m2(^v12+^v22)−ℏω2+ℏω2=m2(^v12+^v22)
Now we will equate the ground state energies
ϵ0|ψ0⟩=H2D|ψ0⟩⟨ψ0|ϵ0|ψ0⟩=⟨ψ0|H2D|ψ0⟩ϵ0⟨ψ0|ψ0⟩=⟨ψ0|H2D|ψ0⟩ϵ0=⟨ψ0|H2D|ψ0⟩hω2=⟨ψ0|H2D|ψ0⟩hω2=⟨ψ0|m2(^v12+^v22)|ψ0⟩hω2=m2⟨ψ0|(^v12+^v22)|ψ0⟩hωm=⟨ψ0|(^v12+^v22)|ψ0⟩
Last but not least, the actual value root mean square value is 32.15.
No comments:
Post a Comment