Question:
Suppose we have a wave function of an electron under an electric field, what would the wave function be in the anti technique we just derived?
Solution:
We just simply do $ \alpha\beta $ to both side of the equation, that gives.
$ \begin{eqnarray*} i\hbar \frac{\partial \Psi_F \left(x,t\right)}{\partial t} &=& \left( c \hat{\alpha} \hat{p} - qF\hat{x} + mc^2 \hat{\beta}\right) \Psi_F \left(x,t\right) \\ -i\hbar \frac{\partial \hat{\alpha}\hat{\beta} \Psi_F \left(x,t\right)}{\partial t} &=& \left( c \hat{\alpha} \hat{p} - QF\hat{x} + Mc^2 \hat{\beta}\right) \hat{\alpha}\hat{\beta} \Psi_F \left(x,t\right) \\ -i\hbar \hat{\alpha}\hat{\beta}\frac{\partial \Psi_F \left(x,t\right)}{\partial t} &=& \left( c \hat{\alpha} \hat{p} - QF\hat{x} + Mc^2 \hat{\beta}\right) \hat{\alpha}\hat{\beta} \Psi_F \left(x,t\right) \\ -i\hbar \hat{\alpha}\hat{\beta}\frac{\partial \Psi_F \left(x,t\right)}{\partial t} &=& \hat{\alpha}\left( c \hat{\alpha} \hat{p} - QF\hat{x} - Mc^2 \hat{\beta}\right) \hat{\beta} \Psi_F \left(x,t\right) \\ -i\hbar \hat{\alpha}\hat{\beta}\frac{\partial \Psi_F \left(x,t\right)}{\partial t} &=& \hat{\alpha}\hat{\beta} \left( -c \hat{\alpha} \hat{p} - QF\hat{x} - Mc^2 \hat{\beta}\right) \Psi_F \left(x,t\right) \\ i\hbar \hat{\alpha}\hat{\beta}\frac{\partial \Psi_F \left(x,t\right)}{\partial t} &=& \hat{\alpha}\hat{\beta} \left( c \hat{\alpha} \hat{p} + QF\hat{x} + Mc^2 \hat{\beta}\right) \Psi_F \left(x,t\right) \\ \end{eqnarray*} $
So the new 'particle' has the charge flipped and the mass stay the same - that envisions positron!
Suppose we have a wave function of an electron under an electric field, what would the wave function be in the anti technique we just derived?
Solution:
We just simply do $ \alpha\beta $ to both side of the equation, that gives.
$ \begin{eqnarray*} i\hbar \frac{\partial \Psi_F \left(x,t\right)}{\partial t} &=& \left( c \hat{\alpha} \hat{p} - qF\hat{x} + mc^2 \hat{\beta}\right) \Psi_F \left(x,t\right) \\ -i\hbar \frac{\partial \hat{\alpha}\hat{\beta} \Psi_F \left(x,t\right)}{\partial t} &=& \left( c \hat{\alpha} \hat{p} - QF\hat{x} + Mc^2 \hat{\beta}\right) \hat{\alpha}\hat{\beta} \Psi_F \left(x,t\right) \\ -i\hbar \hat{\alpha}\hat{\beta}\frac{\partial \Psi_F \left(x,t\right)}{\partial t} &=& \left( c \hat{\alpha} \hat{p} - QF\hat{x} + Mc^2 \hat{\beta}\right) \hat{\alpha}\hat{\beta} \Psi_F \left(x,t\right) \\ -i\hbar \hat{\alpha}\hat{\beta}\frac{\partial \Psi_F \left(x,t\right)}{\partial t} &=& \hat{\alpha}\left( c \hat{\alpha} \hat{p} - QF\hat{x} - Mc^2 \hat{\beta}\right) \hat{\beta} \Psi_F \left(x,t\right) \\ -i\hbar \hat{\alpha}\hat{\beta}\frac{\partial \Psi_F \left(x,t\right)}{\partial t} &=& \hat{\alpha}\hat{\beta} \left( -c \hat{\alpha} \hat{p} - QF\hat{x} - Mc^2 \hat{\beta}\right) \Psi_F \left(x,t\right) \\ i\hbar \hat{\alpha}\hat{\beta}\frac{\partial \Psi_F \left(x,t\right)}{\partial t} &=& \hat{\alpha}\hat{\beta} \left( c \hat{\alpha} \hat{p} + QF\hat{x} + Mc^2 \hat{\beta}\right) \Psi_F \left(x,t\right) \\ \end{eqnarray*} $
So the new 'particle' has the charge flipped and the mass stay the same - that envisions positron!
No comments:
Post a Comment