Problem:
Solution:
Since h=GCD(f2,⋯,fs), therefore fi=hgi for all i∈[2,s].
If p∈⟨f2,⋯,fs⟩, then p=s∑i=2pifi=s∑i=2pihgi=hn∑i=2pigi, therefore p∈⟨h⟩
Now assume without proof (yet, we will do that soon) that there exists polynomial qi such that h=s∑i=2qifi, then it is easy to show if p∈⟨h⟩, then p=rh=rs∑i=2qifi=n∑i=2rqifi, and therefore p∈⟨f2,⋯,fs⟩
So now we establish ⟨h⟩=⟨f2,⋯,fs⟩
If p∈⟨f1,h⟩, then p=af1+bh=af1+bs∑i=2qifi, therefore p∈⟨f1,f2,⋯,fs⟩.
If p∈⟨f1,f2,⋯,f2⟩, then p=af1+c where c∈⟨f2,⋯,fs⟩=⟨h⟩, so we can write p=af1+rh, so p∈⟨f1,h⟩.
Solution:
Since h=GCD(f2,⋯,fs), therefore fi=hgi for all i∈[2,s].
If p∈⟨f2,⋯,fs⟩, then p=s∑i=2pifi=s∑i=2pihgi=hn∑i=2pigi, therefore p∈⟨h⟩
Now assume without proof (yet, we will do that soon) that there exists polynomial qi such that h=s∑i=2qifi, then it is easy to show if p∈⟨h⟩, then p=rh=rs∑i=2qifi=n∑i=2rqifi, and therefore p∈⟨f2,⋯,fs⟩
So now we establish ⟨h⟩=⟨f2,⋯,fs⟩
If p∈⟨f1,h⟩, then p=af1+bh=af1+bs∑i=2qifi, therefore p∈⟨f1,f2,⋯,fs⟩.
If p∈⟨f1,f2,⋯,f2⟩, then p=af1+c where c∈⟨f2,⋯,fs⟩=⟨h⟩, so we can write p=af1+rh, so p∈⟨f1,h⟩.
No comments:
Post a Comment