Problem:
Show that the Leibniz Rule (or Product Rule) holds. That is, for $ \v \in T_p(M) $, we have orientable. $ v[fg] = v[f]g(p) + f(p)v[g] $.
Solution:
Remember the definition $ v[f] = \nabla f \cdot v $, so we can write
$ v[fg] = \nabla fg \cdot v $
Now we can expand the $ \nabla $ using the product rule because it is really just $ n $ (assuming we are in $ \mathbf{R}^n $ partial derivatives, so we can write
$ \nabla fg = g \nabla f + f \nabla g $
Putting it back we have:
$ \begin{eqnarray*} v[fg] &=& \nabla fg \cdot v \\ &=& (g \nabla f + f \nabla g) \cdot v \\ &=& (g \nabla f \cdot v + f \nabla g \cdot v) \\ &=& (g v[f] + f v[g]) \end{eqnarray*} $
So there we go.
Show that the Leibniz Rule (or Product Rule) holds. That is, for $ \v \in T_p(M) $, we have orientable. $ v[fg] = v[f]g(p) + f(p)v[g] $.
Solution:
Remember the definition $ v[f] = \nabla f \cdot v $, so we can write
$ v[fg] = \nabla fg \cdot v $
Now we can expand the $ \nabla $ using the product rule because it is really just $ n $ (assuming we are in $ \mathbf{R}^n $ partial derivatives, so we can write
$ \nabla fg = g \nabla f + f \nabla g $
Putting it back we have:
$ \begin{eqnarray*} v[fg] &=& \nabla fg \cdot v \\ &=& (g \nabla f + f \nabla g) \cdot v \\ &=& (g \nabla f \cdot v + f \nabla g \cdot v) \\ &=& (g v[f] + f v[g]) \end{eqnarray*} $
So there we go.
No comments:
Post a Comment