Problem:
Solution:
Consider a point →x∈V(f1,⋯,fs), we know f1(→x)=⋯=fs(→x)=0.
Because ⟨f1,⋯,fs⟩=⟨g1,⋯,gt⟩, therefore gk=h1f1+⋯+hsfs for all k∈[1,t].
So gk(→x)=h1f1(→x)+⋯+hsfs(→x)=0, so the point →x∈V(g1,⋯,gt).
We have just shown V(f1,⋯,fs)⊂V(g1,⋯,gt).
By symmetry, we also know V(g1,⋯,gt)⊂V(f1,⋯,fs), so the two varieties are equal.
Solution:
Consider a point →x∈V(f1,⋯,fs), we know f1(→x)=⋯=fs(→x)=0.
Because ⟨f1,⋯,fs⟩=⟨g1,⋯,gt⟩, therefore gk=h1f1+⋯+hsfs for all k∈[1,t].
So gk(→x)=h1f1(→x)+⋯+hsfs(→x)=0, so the point →x∈V(g1,⋯,gt).
We have just shown V(f1,⋯,fs)⊂V(g1,⋯,gt).
By symmetry, we also know V(g1,⋯,gt)⊂V(f1,⋯,fs), so the two varieties are equal.
No comments:
Post a Comment