Problem:
For a surface of revolution:
x(u,v)=(g(u),h(u)cosv,h(u)sinv)
Check that xu×xv=h(dhdu,−dgducosv,−dgdusinv).
Why is xu×xv≠0 for all u, v?
Solution:
xu=(g′(u),h′(u)cosv,h′(u)sinv)
xv=(0,−h(u)sinv,h(u)cosv)
xu×xv=|ijkg′(u)h′(u)cosvh′(u)sinv0−h(u)sinvh(u)cosv|=((h′(u)cosv)(h(u)cosv)−(h′(u)sinv)(−h(u)sinv))i+((h′(u)sinv)(0)−(g′(u))(h(u)cosv))j+((g′(u))(−h(u)sinv)−(h′(u)cosv)(0))k=h(u)(h′(u),−cos(v),−sin(v))
If h(u)=0, all bets are off because in fact the normal is 0. Assuming h(u)≠0, then the normal vector is always non zero because cosv and sinv can never be 0 at the same v.
For a surface of revolution:
x(u,v)=(g(u),h(u)cosv,h(u)sinv)
Check that xu×xv=h(dhdu,−dgducosv,−dgdusinv).
Why is xu×xv≠0 for all u, v?
Solution:
xu=(g′(u),h′(u)cosv,h′(u)sinv)
xv=(0,−h(u)sinv,h(u)cosv)
xu×xv=|ijkg′(u)h′(u)cosvh′(u)sinv0−h(u)sinvh(u)cosv|=((h′(u)cosv)(h(u)cosv)−(h′(u)sinv)(−h(u)sinv))i+((h′(u)sinv)(0)−(g′(u))(h(u)cosv))j+((g′(u))(−h(u)sinv)−(h′(u)cosv)(0))k=h(u)(h′(u),−cos(v),−sin(v))
If h(u)=0, all bets are off because in fact the normal is 0. Assuming h(u)≠0, then the normal vector is always non zero because cosv and sinv can never be 0 at the same v.
No comments:
Post a Comment