online advertising
Loading [MathJax]/jax/output/HTML-CSS/jax.js

Saturday, January 16, 2016

Differential Geometry and Its Application - Exercise 2.1.11

Problem:

For a surface of revolution:

x(u,v)=(g(u),h(u)cosv,h(u)sinv)

Check that xu×xv=h(dhdu,dgducosv,dgdusinv).

Why is xu×xv0 for all u, v?

Solution:

xu=(g(u),h(u)cosv,h(u)sinv)
xv=(0,h(u)sinv,h(u)cosv)

xu×xv=|ijkg(u)h(u)cosvh(u)sinv0h(u)sinvh(u)cosv|=((h(u)cosv)(h(u)cosv)(h(u)sinv)(h(u)sinv))i+((h(u)sinv)(0)(g(u))(h(u)cosv))j+((g(u))(h(u)sinv)(h(u)cosv)(0))k=h(u)(h(u),cos(v),sin(v))

If h(u)=0, all bets are off because in fact the normal is 0. Assuming h(u)0, then the normal vector is always non zero because cosv and sinv can never be 0 at the same v.

No comments:

Post a Comment