Problem:
Solution
If $ p \in \langle f - qg, g \rangle $, then $ p = a(f-qg) + bg = af + (b- aq)g \in \langle f, g \rangle $
If $ p \in \langle f, g \rangle $, then $ p = af + bg = a(f-qg) + (b+ aq)g \in \langle f-qg, g \rangle $
Therefore $ \langle f - qg, g \rangle =\langle f, g \rangle $.
No comments:
Post a Comment