online advertising
Loading [MathJax]/jax/output/HTML-CSS/jax.js

Monday, January 11, 2016

Differential Geometry and Its Application - Exercise 3.1.6

Problem:

Using Euler's formula (Corollary 2.4.11) to show

(1) The mean curvature H at a point is the average normal curvature

H=12π2π0k(θ)dθ.

(2) H=12(k(v1)+k(v2)) for any two unit vectors v1 and v2 which are perpendicular.

Solution:

The Euler formula is k(θ)=cos2(θ)λ1+sin2(θ)λ2.

For part (1), we simply integrate it.

Note that cos2θ=1+cos2θ2, so 2π0cos2θ=π.
Same for sin2θ=1cos2θ2, so 2π0sin2θ=π.

Putting them together, we get

12π2π0k(θ)dθ=12π2π0(cos2(θ)λ1+sin2(θ)λ2)dθ=12π(λ12π0cos2(θ)dθ+λ22π0sin2(θ)dθ)=12π(λ1π+λ2π)=λ1+λ22=H

Part (2) is also simple, we have

12(k(v1)+k(v2))=12(k(θ)+k(θ+π2))=12(λ1cos2θ+λ2sin2θ+λ1cos2(θ+π2)+λ2sin2(θ+π2))=12(λ1cos2θ+λ2sin2θ+λ1sin2(θ)+λ2cos2(θ))=12(λ1+λ2)=H

No comments:

Post a Comment