Problem:
Using Euler's formula (Corollary 2.4.11) to show
(1) The mean curvature H at a point is the average normal curvature
H=12π2π∫0k(θ)dθ.
(2) H=12(k(v1)+k(v2)) for any two unit vectors v1 and v2 which are perpendicular.
Solution:
The Euler formula is k(θ)=cos2(θ)λ1+sin2(θ)λ2.
For part (1), we simply integrate it.
Note that cos2θ=1+cos2θ2, so 2π∫0cos2θ=π.
Same for sin2θ=1−cos2θ2, so 2π∫0sin2θ=π.
Putting them together, we get
12π2π∫0k(θ)dθ=12π2π∫0(cos2(θ)λ1+sin2(θ)λ2)dθ=12π(λ12π∫0cos2(θ)dθ+λ22π∫0sin2(θ)dθ)=12π(λ1π+λ2π)=λ1+λ22=H
Part (2) is also simple, we have
12(k(v1)+k(v2))=12(k(θ)+k(θ+π2))=12(λ1cos2θ+λ2sin2θ+λ1cos2(θ+π2)+λ2sin2(θ+π2))=12(λ1cos2θ+λ2sin2θ+λ1sin2(θ)+λ2cos2(θ))=12(λ1+λ2)=H
Using Euler's formula (Corollary 2.4.11) to show
(1) The mean curvature H at a point is the average normal curvature
H=12π2π∫0k(θ)dθ.
(2) H=12(k(v1)+k(v2)) for any two unit vectors v1 and v2 which are perpendicular.
Solution:
The Euler formula is k(θ)=cos2(θ)λ1+sin2(θ)λ2.
For part (1), we simply integrate it.
Note that cos2θ=1+cos2θ2, so 2π∫0cos2θ=π.
Same for sin2θ=1−cos2θ2, so 2π∫0sin2θ=π.
Putting them together, we get
12π2π∫0k(θ)dθ=12π2π∫0(cos2(θ)λ1+sin2(θ)λ2)dθ=12π(λ12π∫0cos2(θ)dθ+λ22π∫0sin2(θ)dθ)=12π(λ1π+λ2π)=λ1+λ22=H
Part (2) is also simple, we have
12(k(v1)+k(v2))=12(k(θ)+k(θ+π2))=12(λ1cos2θ+λ2sin2θ+λ1cos2(θ+π2)+λ2sin2(θ+π2))=12(λ1cos2θ+λ2sin2θ+λ1sin2(θ)+λ2cos2(θ))=12(λ1+λ2)=H
No comments:
Post a Comment