Let's do some integrals! The good thing about integral is
(a) It requires some tricks to get it done, an interesting intellectual challenge.
(b) It is easy to check if I have got the right answer, even without the model answer, just differentiate it.
Problem:
$ \int{\frac{dx}{\sqrt{x} + \sqrt{x + 1}}} $
Solution:
The trick is rationalizing:
$ \begin{eqnarray*} & & \int{\frac{dx}{\sqrt{x} + \sqrt{x + 1}}} \\ &=& \int{\frac{dx}{\sqrt{x} + \sqrt{x + 1}}\frac{\sqrt{x + 1} - \sqrt{x}}{\sqrt{x + 1} - \sqrt{x}}} \\ &=& \int{(\sqrt{x + 1} - \sqrt{x})dx} \\ &=& \frac{2}{3}(x+1)^{\frac{3}{2}} - \frac{2}{3}x^{\frac{3}{2}} + C \end{eqnarray*} $
(a) It requires some tricks to get it done, an interesting intellectual challenge.
(b) It is easy to check if I have got the right answer, even without the model answer, just differentiate it.
Problem:
$ \int{\frac{dx}{\sqrt{x} + \sqrt{x + 1}}} $
Solution:
The trick is rationalizing:
$ \begin{eqnarray*} & & \int{\frac{dx}{\sqrt{x} + \sqrt{x + 1}}} \\ &=& \int{\frac{dx}{\sqrt{x} + \sqrt{x + 1}}\frac{\sqrt{x + 1} - \sqrt{x}}{\sqrt{x + 1} - \sqrt{x}}} \\ &=& \int{(\sqrt{x + 1} - \sqrt{x})dx} \\ &=& \frac{2}{3}(x+1)^{\frac{3}{2}} - \frac{2}{3}x^{\frac{3}{2}} + C \end{eqnarray*} $
No comments:
Post a Comment