online advertising

Saturday, November 21, 2015

Scientific Computing - Quiz 1 - Question 2

Problem:

L'Hopital's rule is a method for determining the value of indeterminate forms. Determine the value of the following limits:

$ \lim\limits_{x \to 0} \frac{2\sin x - \sin 2x}{x-\sin x} $

Solution:

$ \begin{eqnarray*} & & \lim\limits_{x \to 0} \frac{2\sin x - \sin 2x}{x - \sin x} \\ &=& \lim\limits_{x \to 0} \frac{2\cos x - 2 \cos 2x}{1 -\cos x} \\ &=& \lim\limits_{x \to 0} \frac{-2\sin x + 4 \sin 2x}{\sin x} \\ &=& \lim\limits_{x \to 0} \frac{-2\sin x + 8 \sin x \cos x}{\sin x} \\ &=& \lim\limits_{x \to 0} -2 + 8 \cos x \\ &=& 6 \end{eqnarray*} $

One can easily verify this numerically:

x
f(x)
$e^2$
0.1
5.988008283
0.000144
0.01
5.999880001
1.44E-08
0.001
5.9999988
1.44E-12
0.0001
6.000000163
2.64E-14
0.00001
5.999979671
4.13E-10

No comments:

Post a Comment