Problem:
L'Hopital's rule is a method for determining the value of indeterminate forms. Determine the value of the following limits:
limx→02sinx−sin2xx−sinx
Solution:
limx→02sinx−sin2xx−sinx=limx→02cosx−2cos2x1−cosx=limx→0−2sinx+4sin2xsinx=limx→0−2sinx+8sinxcosxsinx=limx→0−2+8cosx=6
One can easily verify this numerically:
L'Hopital's rule is a method for determining the value of indeterminate forms. Determine the value of the following limits:
limx→02sinx−sin2xx−sinx
Solution:
limx→02sinx−sin2xx−sinx=limx→02cosx−2cos2x1−cosx=limx→0−2sinx+4sin2xsinx=limx→0−2sinx+8sinxcosxsinx=limx→0−2+8cosx=6
One can easily verify this numerically:
x
|
f(x)
|
e2
|
0.1
|
5.988008283
|
0.000144
|
0.01
|
5.999880001
|
1.44E-08
|
0.001
|
5.9999988
|
1.44E-12
|
0.0001
|
6.000000163
|
2.64E-14
|
0.00001
|
5.999979671
|
4.13E-10
|
No comments:
Post a Comment