Problem:
∫√4−x4+xdx
Solution:
This one is not easy, I am thinking about this identity
√1−sinθ1+sinθ=1−tanθ21+tanθ2
Therefore I let x=4sinθ, that gives dx=4cosθdθ, the integral becomes
=∫√4−4sinθ4+4sinθ4cosθdθ=∫2√1−sinθ1+sinθ4cosθdθ=∫21−tanθ21+tanθ24cosθdθ=∫21−tanθ21+tanθ241−tan2θ21+tan2θ2dθ
Now it is quite obvious that we should do the t - substitution
t=tanθ2dt=sec2θ212dθdt=(1+t2)12dθdθ=2tdt1+t2
∫21−tanθ21+tanθ241−tan2θ21+tan2θ2dθ=∫21−t1+t41−t21+t22tdt1+t2=8∫11+t2−2t(1+t2)2dt
The first term can be solved by substitute t=tanϕ, dt=sec2ϕdϕ
∫11+t2dt=∫11+tan2ϕsec2ϕdϕ=∫1sec2ϕsec2ϕdϕ=∫dϕ=ϕ
The second term can be solved by substitute u=1+t2, du=2tdt
∫2t(1+t2)2dt=∫1u2du=−1u
Putting them together, we have
∫√4−x4+xdx=8∫11+t2−2t(1+t2)2dt=8(ϕ+1u)=8(ϕ+11+t2)
Now we have t=tanϕ,t=tanθ2, so we simply have ϕ=θ2
8(θ2+11+t2)=8(θ2+11+tan2θ2)=8(θ2+1sec2θ2)=8(θ2+cos2θ2)=8(θ2+1+cosθ2)=4(θ+1+cosθ)
Now constant can be dropped for indefinite integral, and x=4sinθ, so finally we have
4(θ+cosθ)=4(arcsin(x4)+cosθ)=4(arcsin(x4)+√1−sin2θ)=4(arcsin(x4)+√1−(x4)2)
There we go, what a complicated problem!
∫√4−x4+xdx
Solution:
This one is not easy, I am thinking about this identity
√1−sinθ1+sinθ=1−tanθ21+tanθ2
Therefore I let x=4sinθ, that gives dx=4cosθdθ, the integral becomes
=∫√4−4sinθ4+4sinθ4cosθdθ=∫2√1−sinθ1+sinθ4cosθdθ=∫21−tanθ21+tanθ24cosθdθ=∫21−tanθ21+tanθ241−tan2θ21+tan2θ2dθ
Now it is quite obvious that we should do the t - substitution
t=tanθ2dt=sec2θ212dθdt=(1+t2)12dθdθ=2tdt1+t2
∫21−tanθ21+tanθ241−tan2θ21+tan2θ2dθ=∫21−t1+t41−t21+t22tdt1+t2=8∫11+t2−2t(1+t2)2dt
The first term can be solved by substitute t=tanϕ, dt=sec2ϕdϕ
∫11+t2dt=∫11+tan2ϕsec2ϕdϕ=∫1sec2ϕsec2ϕdϕ=∫dϕ=ϕ
The second term can be solved by substitute u=1+t2, du=2tdt
∫2t(1+t2)2dt=∫1u2du=−1u
Putting them together, we have
∫√4−x4+xdx=8∫11+t2−2t(1+t2)2dt=8(ϕ+1u)=8(ϕ+11+t2)
Now we have t=tanϕ,t=tanθ2, so we simply have ϕ=θ2
8(θ2+11+t2)=8(θ2+11+tan2θ2)=8(θ2+1sec2θ2)=8(θ2+cos2θ2)=8(θ2+1+cosθ2)=4(θ+1+cosθ)
Now constant can be dropped for indefinite integral, and x=4sinθ, so finally we have
4(θ+cosθ)=4(arcsin(x4)+cosθ)=4(arcsin(x4)+√1−sin2θ)=4(arcsin(x4)+√1−(x4)2)
There we go, what a complicated problem!
No comments:
Post a Comment