Problem:
Solution:
The previous exercises basically outlined the whole algorithm.
First, find the GCD, $ g $, of $ f_1, \cdots, f_s $. We know that $ V(f_1, \cdots, f_s) = V(g) $.
Next, compute $ g_{\text{red}} = \frac{g}{GCD(g, g')} $
Now we know $ I(V(f_1, \cdots, f_s)) = I(V(g)) = \langle g_{\text{red}} \rangle $
Solution:
The previous exercises basically outlined the whole algorithm.
First, find the GCD, $ g $, of $ f_1, \cdots, f_s $. We know that $ V(f_1, \cdots, f_s) = V(g) $.
Next, compute $ g_{\text{red}} = \frac{g}{GCD(g, g')} $
Now we know $ I(V(f_1, \cdots, f_s)) = I(V(g)) = \langle g_{\text{red}} \rangle $
No comments:
Post a Comment