Problem:
Solution:
Yes I can!
First, note that we only need to find the unit digit, so we can use the binomial theorem to help us to get rid of a lot of noise
264n%10=(260+4)n%10=4n%10.
Next, notice the unit digit pattern in power of 4s.
4
16
64
256
It is just alternating 4 and 6, so the answer unit digit of the first term is 6, and the second term is 4, so the final unit digit is just 0.
By the way, 264102+264103=
2672061284943160918522454763266223159532013534099073129065764495853122847577901956596137015881471742644503555582762443491090345356529962017230305249153860349231365381334758920717003765678148536467012213716576437712205080690644467304472055027010109440
It takes no time to compute this in python:
>> 264 ** 102 + 264 ** 103
Solution:
Yes I can!
First, note that we only need to find the unit digit, so we can use the binomial theorem to help us to get rid of a lot of noise
264n%10=(260+4)n%10=4n%10.
Next, notice the unit digit pattern in power of 4s.
4
16
64
256
It is just alternating 4 and 6, so the answer unit digit of the first term is 6, and the second term is 4, so the final unit digit is just 0.
By the way, 264102+264103=
2672061284943160918522454763266223159532013534099073129065764495853122847577901956596137015881471742644503555582762443491090345356529962017230305249153860349231365381334758920717003765678148536467012213716576437712205080690644467304472055027010109440
It takes no time to compute this in python:
>> 264 ** 102 + 264 ** 103
No comments:
Post a Comment