Problem:
Solution:
Throughout the problem, we let f(x)=n∑i=0cixi, g(x)=n∑i=0dixi,
Part (a)
(bf)′=n∑i=1icibxi−1=bn∑i=1icixi−1=bf′
Part (b) - suppose the two polynomials do not have same degree, just pad the shorter one with 0 coefficients.
(f+g)′=n∑i=1i(ci+di)xi−1=n∑i=1icixi−1+n∑i=1idixi−1=f′+g′
Part (c)
(fg)′=((n∑i=0cixi)(n∑j=0djxj))′=(n∑i=0n∑j=0cidjxi+j)′=n∑i=0n∑j=0(i+j)cidjxi+j−1=n∑i=0n∑j=0icidjxi+j−1+n∑i=0n∑j=0jcidjxi+j−1=(n∑i=1icixi−1)(n∑j=0djxj)+(n∑i=0cixi)(n∑j=1jdjxj−1)=f′g+fg′
Note - in the third and fourth equal sign, the double summation should exclude i+j=0 case, that would explain the switching of summation limits on the fifth equal sign.
Solution:
Throughout the problem, we let f(x)=n∑i=0cixi, g(x)=n∑i=0dixi,
Part (a)
(bf)′=n∑i=1icibxi−1=bn∑i=1icixi−1=bf′
Part (b) - suppose the two polynomials do not have same degree, just pad the shorter one with 0 coefficients.
(f+g)′=n∑i=1i(ci+di)xi−1=n∑i=1icixi−1+n∑i=1idixi−1=f′+g′
Part (c)
(fg)′=((n∑i=0cixi)(n∑j=0djxj))′=(n∑i=0n∑j=0cidjxi+j)′=n∑i=0n∑j=0(i+j)cidjxi+j−1=n∑i=0n∑j=0icidjxi+j−1+n∑i=0n∑j=0jcidjxi+j−1=(n∑i=1icixi−1)(n∑j=0djxj)+(n∑i=0cixi)(n∑j=1jdjxj−1)=f′g+fg′
Note - in the third and fourth equal sign, the double summation should exclude i+j=0 case, that would explain the switching of summation limits on the fifth equal sign.
No comments:
Post a Comment