online advertising
Loading [MathJax]/jax/output/HTML-CSS/jax.js

Sunday, February 7, 2016

UTM Ideals Varieties and Algorithm - Chapter 1 Section 5 Exercise 13

Problem:


Solution:

Throughout the problem, we let f(x)=ni=0cixi, g(x)=ni=0dixi,

Part (a)

(bf)=ni=1icibxi1=bni=1icixi1=bf

Part (b) - suppose the two polynomials do not have same degree, just pad the shorter one with 0 coefficients.

(f+g)=ni=1i(ci+di)xi1=ni=1icixi1+ni=1idixi1=f+g

Part (c)

(fg)=((ni=0cixi)(nj=0djxj))=(ni=0nj=0cidjxi+j)=ni=0nj=0(i+j)cidjxi+j1=ni=0nj=0icidjxi+j1+ni=0nj=0jcidjxi+j1=(ni=1icixi1)(nj=0djxj)+(ni=0cixi)(nj=1jdjxj1)=fg+fg

Note - in the third and fourth equal sign, the double summation should exclude i+j=0 case, that would explain the switching of summation limits on the fifth equal sign.

No comments:

Post a Comment