Problem:
For b2<4ac: +∞∫−∞dx(ax2+bx+c)2
Solution:
Consider the contour concatenating −R to R and then go through a half circle in the upper half plane back to −R, the half circle part goes to 0 (*), so all we need to do is to compute the residue in the upper half plane.
The integrand can be factorized as:
1(ax2+bx+c)2=1(14a(2ax+b+√b2−4ac)(2ax+b−√b2−4ac))2=16a2(2ax+b+√b2−4ac)2(2ax+b−√b2−4ac)2
So we have two poles with order 2: x=−b+√b2−4ac2a and x=−b−√b2−4ac2a, only the first pole is in the upper half plane, so we compute the residue there.
Res[16a2(2ax+b+√b2−4ac)2(2ax+b−√b2−4ac)2,−b+√b2−4ac2a]=limx→−b+√b2−4ac2a((x−−b+√b2−4ac2a)216a2(2ax+b+√b2−4ac)2(2ax+b−√b2−4ac)2)′=limx→−b+√b2−4ac2a((2ax+b−√b2−4ac2a)216a2(2ax+b+√b2−4ac)2(2ax+b−√b2−4ac)2)′=limx→−b+√b2−4ac2a(4(2ax+b+√b2−4ac)2)′=limx→−b+√b2−4ac2a((−2)4(2ax+b+√b2−4ac)3)(2a)=limx→−b+√b2−4ac2a−16a(2ax+b+√b2−4ac)3=−16a(2a(−b+√b2−4ac2a)+b+√b2−4ac)3=−16a((−b+√b2−4ac)+b+√b2−4ac)3=−16a(2√b2−4ac)3=−2a(√b2−4ac)3
Going back to the integral, we get:
+∞∫−∞dx(ax2+bx+c)2=2πi−2a(√b2−4ac)3=−4πai(√b2−4ac)3=4πa(√4ac−b2)3
For b2<4ac: +∞∫−∞dx(ax2+bx+c)2
Solution:
Consider the contour concatenating −R to R and then go through a half circle in the upper half plane back to −R, the half circle part goes to 0 (*), so all we need to do is to compute the residue in the upper half plane.
The integrand can be factorized as:
1(ax2+bx+c)2=1(14a(2ax+b+√b2−4ac)(2ax+b−√b2−4ac))2=16a2(2ax+b+√b2−4ac)2(2ax+b−√b2−4ac)2
So we have two poles with order 2: x=−b+√b2−4ac2a and x=−b−√b2−4ac2a, only the first pole is in the upper half plane, so we compute the residue there.
Res[16a2(2ax+b+√b2−4ac)2(2ax+b−√b2−4ac)2,−b+√b2−4ac2a]=limx→−b+√b2−4ac2a((x−−b+√b2−4ac2a)216a2(2ax+b+√b2−4ac)2(2ax+b−√b2−4ac)2)′=limx→−b+√b2−4ac2a((2ax+b−√b2−4ac2a)216a2(2ax+b+√b2−4ac)2(2ax+b−√b2−4ac)2)′=limx→−b+√b2−4ac2a(4(2ax+b+√b2−4ac)2)′=limx→−b+√b2−4ac2a((−2)4(2ax+b+√b2−4ac)3)(2a)=limx→−b+√b2−4ac2a−16a(2ax+b+√b2−4ac)3=−16a(2a(−b+√b2−4ac2a)+b+√b2−4ac)3=−16a((−b+√b2−4ac)+b+√b2−4ac)3=−16a(2√b2−4ac)3=−2a(√b2−4ac)3
Going back to the integral, we get:
+∞∫−∞dx(ax2+bx+c)2=2πi−2a(√b2−4ac)3=−4πai(√b2−4ac)3=4πa(√4ac−b2)3
No comments:
Post a Comment