online advertising
Loading [MathJax]/jax/output/HTML-CSS/jax.js

Thursday, December 24, 2015

Definite Integrals using Complex Residue (2)

Problem:

For b2<4ac: +dx(ax2+bx+c)2

Solution:

Consider the contour concatenating R to R and then go through a half circle in the upper half plane back to R, the half circle part goes to 0 (*), so all we need to do is to compute the residue in the upper half plane.

The integrand can be factorized as:

1(ax2+bx+c)2=1(14a(2ax+b+b24ac)(2ax+bb24ac))2=16a2(2ax+b+b24ac)2(2ax+bb24ac)2

So we have two poles with order 2: x=b+b24ac2a and x=bb24ac2a, only the first pole is in the upper half plane, so we compute the residue there.

Res[16a2(2ax+b+b24ac)2(2ax+bb24ac)2,b+b24ac2a]=limxb+b24ac2a((xb+b24ac2a)216a2(2ax+b+b24ac)2(2ax+bb24ac)2)=limxb+b24ac2a((2ax+bb24ac2a)216a2(2ax+b+b24ac)2(2ax+bb24ac)2)=limxb+b24ac2a(4(2ax+b+b24ac)2)=limxb+b24ac2a((2)4(2ax+b+b24ac)3)(2a)=limxb+b24ac2a16a(2ax+b+b24ac)3=16a(2a(b+b24ac2a)+b+b24ac)3=16a((b+b24ac)+b+b24ac)3=16a(2b24ac)3=2a(b24ac)3

Going back to the integral, we get:

+dx(ax2+bx+c)2=2πi2a(b24ac)3=4πai(b24ac)3=4πa(4acb2)3

No comments:

Post a Comment