Problem:
y″−y′y=0
Solution:
This time we see x does not appear in the equation, we can let z=y′ and y″=dzdx=dzdydydx=z′z, note that z′ denote dzdy.
The equation becomes
y″−y′y=0z′z−zy=0z′z=zyz′=yz=y22+c1y′=y22+c12dyy2+c22=dx2arctan(y/c2)/c2=x+c3arctan(y/c2)=c2x+c42y/c2=tanc2x+c42y=c2tanc2x+c42y=2c5tan(c5x+c6)
Check:
y=2c5tan(c5x+c6)y′=2c5sec2(c5x+c6)(c5)=2c25sec2(c5x+c6)y″=2c25(2sec(c5x+c6))(sec(c5x+c6)tan(c5x+c6))(c5)=4c35sec2(c5x+c6)tan(c5x+c6)
y″−y′y=0
Solution:
This time we see x does not appear in the equation, we can let z=y′ and y″=dzdx=dzdydydx=z′z, note that z′ denote dzdy.
The equation becomes
y″−y′y=0z′z−zy=0z′z=zyz′=yz=y22+c1y′=y22+c12dyy2+c22=dx2arctan(y/c2)/c2=x+c3arctan(y/c2)=c2x+c42y/c2=tanc2x+c42y=c2tanc2x+c42y=2c5tan(c5x+c6)
Check:
y=2c5tan(c5x+c6)y′=2c5sec2(c5x+c6)(c5)=2c25sec2(c5x+c6)y″=2c25(2sec(c5x+c6))(sec(c5x+c6)tan(c5x+c6))(c5)=4c35sec2(c5x+c6)tan(c5x+c6)
No comments:
Post a Comment