online advertising
Loading [MathJax]/jax/output/HTML-CSS/jax.js

Monday, December 28, 2015

Reduction of order (II)

Problem:

yyy=0

Solution:

This time we see x does not appear in the equation, we can let z=y and y=dzdx=dzdydydx=zz, note that z denote dzdy.

The equation becomes

yyy=0zzzy=0zz=zyz=yz=y22+c1y=y22+c12dyy2+c22=dx2arctan(y/c2)/c2=x+c3arctan(y/c2)=c2x+c42y/c2=tanc2x+c42y=c2tanc2x+c42y=2c5tan(c5x+c6)

Check:

y=2c5tan(c5x+c6)y=2c5sec2(c5x+c6)(c5)=2c25sec2(c5x+c6)y=2c25(2sec(c5x+c6))(sec(c5x+c6)tan(c5x+c6))(c5)=4c35sec2(c5x+c6)tan(c5x+c6)

No comments:

Post a Comment