online advertising

Monday, December 25, 2017

Integral (4)

Problem:

dθA+Bcosθ

Solution:

Let t=tanθ2, cosθ=1t21+t2, dθ=21+t2dt

dθA+Bcosθ=21+t2dtA+B1t21+t2=2dtA(1+t2)+B(1t2)=2dt(A+B)+(AB)t2=21(A+B)(AB)tan1(ABA+Bt)=21(A+B)(AB)tan1(ABA+Btanx2)

The second last step comes from a previously derived result which can be found here.

No comments:

Post a Comment