Problem:
∫dθA+Bcosθ
Solution:
Let t=tanθ2, cosθ=1−t21+t2, dθ=21+t2dt
∫dθA+Bcosθ=∫21+t2dtA+B1−t21+t2=∫2dtA(1+t2)+B(1−t2)=∫2dt(A+B)+(A−B)t2=2√1(A+B)(A−B)tan−1(√A−BA+Bt)=2√1(A+B)(A−B)tan−1(√A−BA+Btanx2)
The second last step comes from a previously derived result which can be found here.
∫dθA+Bcosθ
Solution:
Let t=tanθ2, cosθ=1−t21+t2, dθ=21+t2dt
∫dθA+Bcosθ=∫21+t2dtA+B1−t21+t2=∫2dtA(1+t2)+B(1−t2)=∫2dt(A+B)+(A−B)t2=2√1(A+B)(A−B)tan−1(√A−BA+Bt)=2√1(A+B)(A−B)tan−1(√A−BA+Btanx2)
The second last step comes from a previously derived result which can be found here.
No comments:
Post a Comment