Problem:
$ \int\frac{dt}{P + Qt^2} $
Solution:
Let $ \sqrt{\frac{P}{Q}}y = t $, so $ \sqrt{\frac{P}{Q}}dy = dt $.
$ \begin{eqnarray*} & & \int\frac{dt}{P + Qt^2} \\ &=& \int\frac{\sqrt{\frac{P}{Q}}dy}{P + Q\left(\sqrt{\frac{P}{Q}}y\right)^2} \\ &=& \int\frac{\sqrt{\frac{P}{Q}}dy}{P + Q\frac{P}{Q}y^2} \\ &=& \int\frac{\sqrt{\frac{P}{Q}}dy}{P + Py^2} \\ &=& \sqrt{\frac{P}{Q}}\int\frac{dy}{P + Py^2} \\ &=& \sqrt{\frac{1}{PQ}}\int\frac{dy}{1 + y^2} \\ &=& \sqrt{\frac{1}{PQ}}\tan^{-1} y \\ &=& \sqrt{\frac{1}{PQ}}\tan^{-1} \left(\sqrt{\frac{Q}{P}}t\right) \\ \end{eqnarray*} $
$ \int\frac{dt}{P + Qt^2} $
Solution:
Let $ \sqrt{\frac{P}{Q}}y = t $, so $ \sqrt{\frac{P}{Q}}dy = dt $.
$ \begin{eqnarray*} & & \int\frac{dt}{P + Qt^2} \\ &=& \int\frac{\sqrt{\frac{P}{Q}}dy}{P + Q\left(\sqrt{\frac{P}{Q}}y\right)^2} \\ &=& \int\frac{\sqrt{\frac{P}{Q}}dy}{P + Q\frac{P}{Q}y^2} \\ &=& \int\frac{\sqrt{\frac{P}{Q}}dy}{P + Py^2} \\ &=& \sqrt{\frac{P}{Q}}\int\frac{dy}{P + Py^2} \\ &=& \sqrt{\frac{1}{PQ}}\int\frac{dy}{1 + y^2} \\ &=& \sqrt{\frac{1}{PQ}}\tan^{-1} y \\ &=& \sqrt{\frac{1}{PQ}}\tan^{-1} \left(\sqrt{\frac{Q}{P}}t\right) \\ \end{eqnarray*} $
No comments:
Post a Comment