Following up with the last post, we wanted to understand why xe−2x is the solution when −2 is a repeated root.
Let's start with this, (p(x)eax)(k)
We notice this pattern
(p(x)eax)′=eax(ap(x)+p′(x))
(p(x)eax)″
(p(x)e^{ax})''' = e^{ax}(a^3p(x) + 3a^2p'(x) + 3ap''(x) + p'''(x))
Feel like binomial expansion? Let's prove this.
Let S(n) be the statement (p(x)e^{ax})^{(n)} = e^{ax}\sum\limits_{i=0}^{n}(\left(\begin{array}{c}n\\i\end{array}\right)a^i p^{(n-i)}(x))
S(0) is obviously true, now let's assume S(k) is true and
(p(x)e^{ax})^{(k)} = e^{ax}\sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k-i)}(x))
Now we differentiate both sides once more, we get
(p(x)e^{ax})^{(k+1)} = e^{ax} (\sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k-i)}(x)))' + ae^{ax}\sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k-i)}(x))
Don't be shied away from the first term, it is just differentiating polynomials, so adding 1 to the differentiation times and that's all. grouping terms, we will get
\begin{eqnarray*} (p(x)e^{ax})^{(k+1)} &=& e^{ax} \sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k+1-i)}(x)) + ae^{ax}\sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k-i)}(x)) \\ &=& e^{ax} \sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k+1-i)}(x)) + ae^{ax}\sum\limits_{i=1}^{k+1}(\left(\begin{array}{c}k\\i - 1\end{array}\right)a^{i-1} p^{(k+1-i)}(x)) \\ &=& e^{ax} \sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k+1-i)}(x)) + e^{ax}\sum\limits_{i=1}^{k+1}(\left(\begin{array}{c}k\\i - 1\end{array}\right)a^i p^{(k+1-i)}(x)) \\ &=& e^{ax} \left(\begin{array}{c}k\\0\end{array}\right)a^0 p^{(k+1-0)}(x) + e^{ax} \sum\limits_{i=1}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k+1-i)}(x)) + e^{ax}\sum\limits_{i=1}^{k}(\left(\begin{array}{c}k\\i - 1\end{array}\right)a^i p^{(k+1-i)}(x)) + e^{ax}\left(\begin{array}{c}k\\k+1 - 1\end{array}\right)a^{k+1} p^{(k+1-(k+1))}(x) \\ &=& e^{ax} a^0 p^{(k+1)}(x) + e^{ax} \sum\limits_{i=1}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k+1-i)}(x)) + e^{ax}\sum\limits_{i=1}^{k}(\left(\begin{array}{c}k\\i - 1\end{array}\right)a^i p^{(k+1-i)}(x)) + e^{ax}a^{k+1} p^{(0)}(x) \\ &=& e^{ax} a^0 p^{(k+1)}(x) + e^{ax} \sum\limits_{i=1}^{k}(\left(\left(\begin{array}{c}k\\i\end{array}\right)+\left(\begin{array}{c}k\\i-1\end{array}\right)\right)a^i p^{(k+1-i)}(x)) + e^{ax}a^{k+1} p^{(0)}(x) \\ &=& e^{ax} a^0 p^{(k+1)}(x) + e^{ax} \sum\limits_{i=1}^{k}(\left(\begin{array}{c}k + 1\\i\end{array}\right)a^i p^{(k+1-i)}(x)) + e^{ax}a^{k+1} p^{(0)}(x) \\ &=& e^{ax} \sum\limits_{i=0}^{k+1}(\left(\begin{array}{c}k + 1\\i\end{array}\right)a^i p^{(k+1-i)}(x)) \\ \end{eqnarray*}
Well, a little more complicated than I wanted it to be, but I proved the result.
Next, we assume the differential equation has constant coefficient like this \sum\limits_{j=0}^{n} c_j y^{(j)} = 0 , and that r is a root of multiplicity k . In this case, we claim x^m e^{rx} is a solution for the differential equation for 0 \le m < k . All we need to do is to put it back to the equation and use our result above:
\begin{eqnarray*} & & \sum\limits_{j=0}^{n} c_j y^{(j)} \\ &=& \sum\limits_{j=0}^{n} c_j e^{rx}\sum\limits_{i=0}^{j}(\left(\begin{array}{c}j\\i\end{array}\right)r^i p^{(j-i)}(x)) \\ &=& e^{rx} \sum\limits_{j=0}^{n} c_j \sum\limits_{i=0}^{j}(\left(\begin{array}{c}j\\i\end{array}\right)r^i p^{(j-i)}(x)) \\ &=& e^{rx} \sum\limits_{j=0}^{n} c_j \sum\limits_{i=0}^{j}(\left(\begin{array}{c}j\\i\end{array}\right)r^{j-i} p^{(i)}(x)) \\ &=& e^{rx} \sum\limits_{i=0}^{n} \sum\limits_{j=i}^{n} c_j (\left(\begin{array}{c}j\\i\end{array}\right)r^{j-i} p^{(i)}(x)) \\ &=& e^{rx} \sum\limits_{i=0}^{n} \sum\limits_{j=i}^{n} c_j (\frac{j!}{i! (j-i)!}r^{j-i} p^{(i)}(x)) \\ &=& e^{rx} \sum\limits_{i=0}^{n} \frac{p^{(i)}(x)}{i!} \sum\limits_{j=i}^{n} c_j (\frac{j!}{(j-i)!}r^{j-i} ) \\ \end{eqnarray*}
Note that the inner summation is really just the characteristics polynomial differentiated i times evaluated at r , and we know r is a root of multiplicity k , so for all i < k , the term is zero.
For the other terms, we differentiated p(x) at least k times, but p(x) = x^m , so the derivative vanishes, and those terms go to 0 as well. Combining the two facts, the differential equation is satisfied, and therefore it is a solution!
Q.E.D.
The magic step of the fourth equal sign probably need some explanation. One can better visualize that if one programs, it is basically a loop transformation
for (j = 0 to n) { for (i = 0 to j } { } }
is transformed to
for (i = 0 to n) { for (j = i to n } { } }
The easiest way to see why this transformation is valid is by generating the (i, j) tuples created by these loops.
Let's start with this, (p(x)eax)(k)
We notice this pattern
(p(x)eax)′=eax(ap(x)+p′(x))
(p(x)eax)″
(p(x)e^{ax})''' = e^{ax}(a^3p(x) + 3a^2p'(x) + 3ap''(x) + p'''(x))
Feel like binomial expansion? Let's prove this.
Let S(n) be the statement (p(x)e^{ax})^{(n)} = e^{ax}\sum\limits_{i=0}^{n}(\left(\begin{array}{c}n\\i\end{array}\right)a^i p^{(n-i)}(x))
S(0) is obviously true, now let's assume S(k) is true and
(p(x)e^{ax})^{(k)} = e^{ax}\sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k-i)}(x))
Now we differentiate both sides once more, we get
(p(x)e^{ax})^{(k+1)} = e^{ax} (\sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k-i)}(x)))' + ae^{ax}\sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k-i)}(x))
Don't be shied away from the first term, it is just differentiating polynomials, so adding 1 to the differentiation times and that's all. grouping terms, we will get
\begin{eqnarray*} (p(x)e^{ax})^{(k+1)} &=& e^{ax} \sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k+1-i)}(x)) + ae^{ax}\sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k-i)}(x)) \\ &=& e^{ax} \sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k+1-i)}(x)) + ae^{ax}\sum\limits_{i=1}^{k+1}(\left(\begin{array}{c}k\\i - 1\end{array}\right)a^{i-1} p^{(k+1-i)}(x)) \\ &=& e^{ax} \sum\limits_{i=0}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k+1-i)}(x)) + e^{ax}\sum\limits_{i=1}^{k+1}(\left(\begin{array}{c}k\\i - 1\end{array}\right)a^i p^{(k+1-i)}(x)) \\ &=& e^{ax} \left(\begin{array}{c}k\\0\end{array}\right)a^0 p^{(k+1-0)}(x) + e^{ax} \sum\limits_{i=1}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k+1-i)}(x)) + e^{ax}\sum\limits_{i=1}^{k}(\left(\begin{array}{c}k\\i - 1\end{array}\right)a^i p^{(k+1-i)}(x)) + e^{ax}\left(\begin{array}{c}k\\k+1 - 1\end{array}\right)a^{k+1} p^{(k+1-(k+1))}(x) \\ &=& e^{ax} a^0 p^{(k+1)}(x) + e^{ax} \sum\limits_{i=1}^{k}(\left(\begin{array}{c}k\\i\end{array}\right)a^i p^{(k+1-i)}(x)) + e^{ax}\sum\limits_{i=1}^{k}(\left(\begin{array}{c}k\\i - 1\end{array}\right)a^i p^{(k+1-i)}(x)) + e^{ax}a^{k+1} p^{(0)}(x) \\ &=& e^{ax} a^0 p^{(k+1)}(x) + e^{ax} \sum\limits_{i=1}^{k}(\left(\left(\begin{array}{c}k\\i\end{array}\right)+\left(\begin{array}{c}k\\i-1\end{array}\right)\right)a^i p^{(k+1-i)}(x)) + e^{ax}a^{k+1} p^{(0)}(x) \\ &=& e^{ax} a^0 p^{(k+1)}(x) + e^{ax} \sum\limits_{i=1}^{k}(\left(\begin{array}{c}k + 1\\i\end{array}\right)a^i p^{(k+1-i)}(x)) + e^{ax}a^{k+1} p^{(0)}(x) \\ &=& e^{ax} \sum\limits_{i=0}^{k+1}(\left(\begin{array}{c}k + 1\\i\end{array}\right)a^i p^{(k+1-i)}(x)) \\ \end{eqnarray*}
Well, a little more complicated than I wanted it to be, but I proved the result.
Next, we assume the differential equation has constant coefficient like this \sum\limits_{j=0}^{n} c_j y^{(j)} = 0 , and that r is a root of multiplicity k . In this case, we claim x^m e^{rx} is a solution for the differential equation for 0 \le m < k . All we need to do is to put it back to the equation and use our result above:
\begin{eqnarray*} & & \sum\limits_{j=0}^{n} c_j y^{(j)} \\ &=& \sum\limits_{j=0}^{n} c_j e^{rx}\sum\limits_{i=0}^{j}(\left(\begin{array}{c}j\\i\end{array}\right)r^i p^{(j-i)}(x)) \\ &=& e^{rx} \sum\limits_{j=0}^{n} c_j \sum\limits_{i=0}^{j}(\left(\begin{array}{c}j\\i\end{array}\right)r^i p^{(j-i)}(x)) \\ &=& e^{rx} \sum\limits_{j=0}^{n} c_j \sum\limits_{i=0}^{j}(\left(\begin{array}{c}j\\i\end{array}\right)r^{j-i} p^{(i)}(x)) \\ &=& e^{rx} \sum\limits_{i=0}^{n} \sum\limits_{j=i}^{n} c_j (\left(\begin{array}{c}j\\i\end{array}\right)r^{j-i} p^{(i)}(x)) \\ &=& e^{rx} \sum\limits_{i=0}^{n} \sum\limits_{j=i}^{n} c_j (\frac{j!}{i! (j-i)!}r^{j-i} p^{(i)}(x)) \\ &=& e^{rx} \sum\limits_{i=0}^{n} \frac{p^{(i)}(x)}{i!} \sum\limits_{j=i}^{n} c_j (\frac{j!}{(j-i)!}r^{j-i} ) \\ \end{eqnarray*}
Note that the inner summation is really just the characteristics polynomial differentiated i times evaluated at r , and we know r is a root of multiplicity k , so for all i < k , the term is zero.
For the other terms, we differentiated p(x) at least k times, but p(x) = x^m , so the derivative vanishes, and those terms go to 0 as well. Combining the two facts, the differential equation is satisfied, and therefore it is a solution!
Q.E.D.
The magic step of the fourth equal sign probably need some explanation. One can better visualize that if one programs, it is basically a loop transformation
for (j = 0 to n) { for (i = 0 to j } { } }
is transformed to
for (i = 0 to n) { for (j = i to n } { } }
The easiest way to see why this transformation is valid is by generating the (i, j) tuples created by these loops.