Last time we proved sin3x=14(3sinx−sin3x) and we promised to go for the sinnx, so here we are, using recurrences.
We start with:
sinn−2x=∑ajsinjx
Next we multiply sin2x on both side and get
sinn−2x=∑ajsinjxsinnx=∑ajsin2xsinjx=12∑aj(sinx(cos(x−jx))−cos(x+jx)))=12∑aj(sinxcos(x−jx))−sinxcos(x+jx))=14∑aj(sin(x+x−jx)+sin(x−(x−jx))−sin(x+x+jx)−sin(x−(x+jx)))=14∑aj(sin(2−j)x+sin(jx)−sin(j+2)x−sin(−jx))=14∑aj(−sin(j−2)x+sin(jx)−sin(j+2)x+sin(jx))=14∑aj(−sin(j−2)x+2sin(jx)−sin(j+2)x)
So that's the theory. Imagine this, take every term in the sine series, push a negative value to your neighbors, and double itself. Sum these little pieces together
sin3x=14(−sin3x+2sinx−sin(−x))
We apply the principle once again, we get
1 -2 1
-2 4 -2
1 -2 1
sin5x=116(sin5x−4sin(3x)+6sinx−4sin(−x)+sin(−3x))
Note the beautiful symmetry and binomial coefficients!
We start with:
sinn−2x=∑ajsinjx
Next we multiply sin2x on both side and get
sinn−2x=∑ajsinjxsinnx=∑ajsin2xsinjx=12∑aj(sinx(cos(x−jx))−cos(x+jx)))=12∑aj(sinxcos(x−jx))−sinxcos(x+jx))=14∑aj(sin(x+x−jx)+sin(x−(x−jx))−sin(x+x+jx)−sin(x−(x+jx)))=14∑aj(sin(2−j)x+sin(jx)−sin(j+2)x−sin(−jx))=14∑aj(−sin(j−2)x+sin(jx)−sin(j+2)x+sin(jx))=14∑aj(−sin(j−2)x+2sin(jx)−sin(j+2)x)
So that's the theory. Imagine this, take every term in the sine series, push a negative value to your neighbors, and double itself. Sum these little pieces together
sin3x=14(−sin3x+2sinx−sin(−x))
We apply the principle once again, we get
1 -2 1
-2 4 -2
1 -2 1
sin5x=116(sin5x−4sin(3x)+6sinx−4sin(−x)+sin(−3x))
Note the beautiful symmetry and binomial coefficients!
No comments:
Post a Comment