online advertising

Saturday, October 10, 2015

Some trigonometry formula (IV)

Last time we proved sin3x=14(3sinxsin3x) and we promised to go for the sinnx, so here we are, using recurrences.

We start with:

sinn2x=ajsinjx

Next we multiply sin2x on both side and get

sinn2x=ajsinjxsinnx=ajsin2xsinjx=12aj(sinx(cos(xjx))cos(x+jx)))=12aj(sinxcos(xjx))sinxcos(x+jx))=14aj(sin(x+xjx)+sin(x(xjx))sin(x+x+jx)sin(x(x+jx)))=14aj(sin(2j)x+sin(jx)sin(j+2)xsin(jx))=14aj(sin(j2)x+sin(jx)sin(j+2)x+sin(jx))=14aj(sin(j2)x+2sin(jx)sin(j+2)x)

So that's the theory. Imagine this, take every term in the sine series, push a negative value to your neighbors, and double itself. Sum these little pieces together

sin3x=14(sin3x+2sinxsin(x))

We apply the principle once again, we get

1 -2 1
  -2 4 -2
     1 -2 1

sin5x=116(sin5x4sin(3x)+6sinx4sin(x)+sin(3x))

Note the beautiful symmetry and binomial coefficients!

No comments:

Post a Comment