online advertising
Processing math: 100%

Friday, October 2, 2015

Some trigonometry formula (II)

Following the last post, we now introduce the interesting consequences for the formula we derived. Remember we have these


sin(α+β)=sinαcosβ+sinβcosαsin(αβ)=sinαcosβsinβcosαcos(α+β)=cosαcosβsinβsinαcos(αβ)=cosαcosβ+sinβsinα

There are a few things we could do, for example, we could substitute β=α and get

sin(2α)=sin(α+α)=sinαcosα+sinαcosα=2sinαcosα

cos(2α)=cos(α+α)=cosαcosαsinαsinα=cos2αsin2α

More interestingly, we can add and subtract these formula together to do something, for example

sin(α+β)+sin(αβ)=sinαcosβ+sinβcosα+sinαcosβsinβcosα=sinαcosβ+sinαcosβ=2sinαcosβ

sin(α+β)sin(αβ)=sinαcosβ+sinβcosαsinαcosβ+sinβcosα=sinβcosα+sinβcosα=2sinβcosα

cos(α+β)+cos(αβ)=cosαcosβsinβsinα+cosαcosβ+sinβsinα=cosαcosβ+cosαcosβ=2cosαcosβ

cos(αβ)cos(α+β)=cosαcosβ+sinβsinαcosαcosβ+sinβsinα=sinβsinα+sinβsinα=2sinβsinα

If you look at these equation closely, you notice we converted a sum to a product, this can be very useful. To summarize, in this post, we have derived

sin(2α)=2sinαcosβcos(2α)=cos2αsin2α

sin(α+β)+sin(αβ)=2sinαcosβsin(α+β)sin(αβ)=2sinβcosαcos(α+β)+cos(αβ)=2cosαcosβcos(αβ)cos(α+β)=2sinβsinα

No comments:

Post a Comment