Problem:
Solution:
Here is the Exercise 1 statement.
Okay, I know this is stupid, this is just an exercise!
Part (a)
lex order: −z2+z+3y+x3+x2+2x
LM(f)=z2
LT(f)=−z2
multideg(f)=(2,0,0)
(2, 0, 0)
(1, 0, 0)
(0, 1, 0)
(0, 0, 3)
(0, 0, 2)
(0, 0, 1)
grlex order: x3−z2+x2+z+3y+2x
LM(f)=x3
LT(f)=x3
multideg(f)=(0,0,3)
(0, 0, 3)
(2, 0, 0)
(0, 0, 2)
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
grevlex order: x3+z2−x2+z+3y+2x
LM(f)=x3
LT(f)=x3
multideg(f)=(0,0,3)
(0, 0, 3)
(2, 0, 0)
(0, 0, 2)
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
Part (b)
lex order: −3x5yz4+xyz3+2x2y8−xy4
LM(f)=x5yz4
LT(f)=−3x5yz4
multideg(f)=(4,1,5)
(4, 1, 5)
(3, 1, 1)
(0, 8, 2)
(0, 4, 1)
grlex order: −3x5yz4+2x2y8+xyz3−xy4
LM(f)=x5yz4
LT(f)=−3x5yz4
multideg(f)=(4,1,5)
(4, 1, 5)
(0, 8, 2)
(3, 1, 1)
(0, 4, 1)
grevlex order: 2x2y8−3x5yz4+xyz3−xy4
LM(f)=x2y8
LT(f)=2x2y8
multideg(f)=(0,8,2)
(0, 8, 2)
(4, 1, 5)
(3, 1, 1)
(0, 4, 1)
Solution:
Here is the Exercise 1 statement.
Okay, I know this is stupid, this is just an exercise!
Part (a)
lex order: −z2+z+3y+x3+x2+2x
LM(f)=z2
LT(f)=−z2
multideg(f)=(2,0,0)
(2, 0, 0)
(1, 0, 0)
(0, 1, 0)
(0, 0, 3)
(0, 0, 2)
(0, 0, 1)
grlex order: x3−z2+x2+z+3y+2x
LM(f)=x3
LT(f)=x3
multideg(f)=(0,0,3)
(0, 0, 3)
(2, 0, 0)
(0, 0, 2)
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
grevlex order: x3+z2−x2+z+3y+2x
LM(f)=x3
LT(f)=x3
multideg(f)=(0,0,3)
(0, 0, 3)
(2, 0, 0)
(0, 0, 2)
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
Part (b)
lex order: −3x5yz4+xyz3+2x2y8−xy4
LM(f)=x5yz4
LT(f)=−3x5yz4
multideg(f)=(4,1,5)
(4, 1, 5)
(3, 1, 1)
(0, 8, 2)
(0, 4, 1)
grlex order: −3x5yz4+2x2y8+xyz3−xy4
LM(f)=x5yz4
LT(f)=−3x5yz4
multideg(f)=(4,1,5)
(4, 1, 5)
(0, 8, 2)
(3, 1, 1)
(0, 4, 1)
grevlex order: 2x2y8−3x5yz4+xyz3−xy4
LM(f)=x2y8
LT(f)=2x2y8
multideg(f)=(0,8,2)
(0, 8, 2)
(4, 1, 5)
(3, 1, 1)
(0, 4, 1)
No comments:
Post a Comment