Problem:
Solution:
The key step in this problem is to let $ n = A2^p3^q5^r $, it can be easily seen that $ A = 1 $ for minimal value in the set.
The fact that these roots are natural number give rise to these equations:
$ p - 1 = 0 \mod 2 $
$ p = 0 \mod 3 $
$ p = 0 \mod 5 $
$ q = 0 \mod 2 $
$ q - 1 = 0 \mod 3 $
$ q = 0 \mod 5 $
$ r = 0 \mod 2 $
$ r = 0 \mod 3 $
$ r - 1 = 0 \mod 5 $
By Chinese remainder theorem, we get $ p = 15 $, $ q = 10 $, $ r = 6 $, so the answer is
$ 2^15 \times 3^10 \times 5^6 = 30,233,088,000,000 $
Solution:
The key step in this problem is to let $ n = A2^p3^q5^r $, it can be easily seen that $ A = 1 $ for minimal value in the set.
The fact that these roots are natural number give rise to these equations:
$ p - 1 = 0 \mod 2 $
$ p = 0 \mod 3 $
$ p = 0 \mod 5 $
$ q = 0 \mod 2 $
$ q - 1 = 0 \mod 3 $
$ q = 0 \mod 5 $
$ r = 0 \mod 2 $
$ r = 0 \mod 3 $
$ r - 1 = 0 \mod 5 $
By Chinese remainder theorem, we get $ p = 15 $, $ q = 10 $, $ r = 6 $, so the answer is
$ 2^15 \times 3^10 \times 5^6 = 30,233,088,000,000 $
No comments:
Post a Comment