Problem:
Solution:
It is a really simple sorting exercise, so let's do some warmup.
Part (a)
lex order: x3+x2+2x+3y−z2+z
LM(f)=x3
LT(f)=x3
multideg(f)=(3,0,0)
(3, 0, 0)
(2, 0, 0)
(1, 0, 0)
(0, 1, 0)
(0, 0, 2)
(0, 0, 1)
grlex order: x3+x2−z2+2x+3y+z
LM(f)=x3
LT(f)=x3
multideg(f)=(3,0,0)
(3, 0, 0)
(2, 0, 0)
(0, 0, 2)
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
grevlex order: x3+x2−z2+2x+3y+z
LM(f)=x3
LT(f)=x3
multideg(f)=(3,0,0)
(3, 0, 0)
(2, 0, 0)
(0, 0, 2)
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
Part (b)
lex order: −3x5yz4+2x2y8−xy4+xyz3
LM(f)=x5yz4
LT(f)=−3x5yz4
multideg(f)=(5,1,4)
(5, 1, 4)
(2, 8, 0)
(1, 4, 0)
(1, 1, 3)
grlex order: −3x5yz4+2x2y8−xy4+xyz3
LM(f)=x5yz4
LT(f)=−3x5yz4
multideg(f)=(5,1,4)
(5, 1, 4)
(2, 8, 0)
(1, 4, 0)
(1, 1, 3)
grevlex order: 2x2y8−3x5yz4−xy4+xyz3
LM(f)=x2y8
LT(f)=2x2y8
multideg(f)=(2,8,0)
(2, 8, 0)
(5, 1 ,4)
(1, 4, 0)
(1, 1, 3)
Solution:
It is a really simple sorting exercise, so let's do some warmup.
Part (a)
lex order: x3+x2+2x+3y−z2+z
LM(f)=x3
LT(f)=x3
multideg(f)=(3,0,0)
(3, 0, 0)
(2, 0, 0)
(1, 0, 0)
(0, 1, 0)
(0, 0, 2)
(0, 0, 1)
grlex order: x3+x2−z2+2x+3y+z
LM(f)=x3
LT(f)=x3
multideg(f)=(3,0,0)
(3, 0, 0)
(2, 0, 0)
(0, 0, 2)
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
grevlex order: x3+x2−z2+2x+3y+z
LM(f)=x3
LT(f)=x3
multideg(f)=(3,0,0)
(3, 0, 0)
(2, 0, 0)
(0, 0, 2)
(1, 0, 0)
(0, 1, 0)
(0, 0, 1)
Part (b)
lex order: −3x5yz4+2x2y8−xy4+xyz3
LM(f)=x5yz4
LT(f)=−3x5yz4
multideg(f)=(5,1,4)
(5, 1, 4)
(2, 8, 0)
(1, 4, 0)
(1, 1, 3)
grlex order: −3x5yz4+2x2y8−xy4+xyz3
LM(f)=x5yz4
LT(f)=−3x5yz4
multideg(f)=(5,1,4)
(5, 1, 4)
(2, 8, 0)
(1, 4, 0)
(1, 1, 3)
grevlex order: 2x2y8−3x5yz4−xy4+xyz3
LM(f)=x2y8
LT(f)=2x2y8
multideg(f)=(2,8,0)
(2, 8, 0)
(5, 1 ,4)
(1, 4, 0)
(1, 1, 3)
No comments:
Post a Comment