Problem:
∫1√4x2+25dx
Solution:
The key substitution to use is x=52sinhy. Then we have dx=52coshydy.
int1√4x2+25dx=∫1√4(52sinhy)2+2552coshydy=∫1√25sinh2y+2552coshydy=∫1√sinh2y+112coshydy=∫1coshy12coshydy=∫12dy=12y+C=12sinh−12x5+C
∫1√4x2+25dx
Solution:
The key substitution to use is x=52sinhy. Then we have dx=52coshydy.
int1√4x2+25dx=∫1√4(52sinhy)2+2552coshydy=∫1√25sinh2y+2552coshydy=∫1√sinh2y+112coshydy=∫1coshy12coshydy=∫12dy=12y+C=12sinh−12x5+C
No comments:
Post a Comment