Today morning, I am having fun solving this coupled differential equation pair.
˙X=[1−441]X+[4t+9e6t−t+e6t]
With initial conditions X(0)=117[2135]
The key to solving this puzzle is to decouple the equations, to do that, we diagonalize the matrix. I get this handy equation:
[1−441]=12[11−ii][1+4i001−4i][1i1−i]
We substitute this back to the equation, we see something interesting.
˙X=12[11−ii][1+4i001−4i][1i1−i]X+[4t+9e6t−t+e6t][1i1−i]˙X=12[1i1−i][11−ii][1+4i001−4i][1i1−i]X+[1i1−i][4t+9e6t−t+e6t][1i1−i]˙X=[1+4i001−4i][1i1−i]X+[1i1−i][4t+9e6t−t+e6t]
It is now obvious that we should let Y=[1i1−i]X. That would then give
˙Y=[1+4i001−4i]Y+[1i1−i][4t+9e6t−t+e6t]
Now we have decoupled the equations. Let Y=[y1y2], we have two separate equations instead of a coupled pair, which can be solved separately.
y′1(t)=(1+4i)y1(t)+(4t+9e6t)+i(−t+e6t)y′2(t)=(1−4i)y2(t)+(4t+9e6t)−i(−t+e6t)
Just so we are not lost, we also let X=[x1x2], and therefore we have these relations:
y1=x1+ix2y2=x1−ix2
Let's try to solve it with Laplace's transform. For the first equation, taking Laplace's transform on both sides give this:
y′1(t)=(1+4i)y1(t)+(4t+9e6t)+i(−t+e6t)=(1+4i)y1(t)+(4−i)t+(9+i)e6tL(y′1(t))=L((1+4i)y1(t)+(4−i)t+(9+i)e6t)sY1(s)−y1(0)=(1+4i)Y1(s)+4−is2+9+is−6sY1(s)−(1+4i)Y1(s)=y1(0)+4−is2+9+is−6(s−1−4i)Y1(s)=21+35i17+4−is2+9+is−6Y1(s)=21+35i17(s−1−4i)+4−is2(s−1−4i)+9+i(s−6)(s−1−4i)
Without repeating, we get, similarly, that
Y2(s)=21−35i17(s−1+4i)+4+is2(s−1+4i)+9−i(s−6)(s−1+4i)
The rest is just ugly partial fractions and inverse Laplace transform.
˙X=[1−441]X+[4t+9e6t−t+e6t]
With initial conditions X(0)=117[2135]
The key to solving this puzzle is to decouple the equations, to do that, we diagonalize the matrix. I get this handy equation:
[1−441]=12[11−ii][1+4i001−4i][1i1−i]
We substitute this back to the equation, we see something interesting.
˙X=12[11−ii][1+4i001−4i][1i1−i]X+[4t+9e6t−t+e6t][1i1−i]˙X=12[1i1−i][11−ii][1+4i001−4i][1i1−i]X+[1i1−i][4t+9e6t−t+e6t][1i1−i]˙X=[1+4i001−4i][1i1−i]X+[1i1−i][4t+9e6t−t+e6t]
It is now obvious that we should let Y=[1i1−i]X. That would then give
˙Y=[1+4i001−4i]Y+[1i1−i][4t+9e6t−t+e6t]
Now we have decoupled the equations. Let Y=[y1y2], we have two separate equations instead of a coupled pair, which can be solved separately.
y′1(t)=(1+4i)y1(t)+(4t+9e6t)+i(−t+e6t)y′2(t)=(1−4i)y2(t)+(4t+9e6t)−i(−t+e6t)
Just so we are not lost, we also let X=[x1x2], and therefore we have these relations:
y1=x1+ix2y2=x1−ix2
Let's try to solve it with Laplace's transform. For the first equation, taking Laplace's transform on both sides give this:
y′1(t)=(1+4i)y1(t)+(4t+9e6t)+i(−t+e6t)=(1+4i)y1(t)+(4−i)t+(9+i)e6tL(y′1(t))=L((1+4i)y1(t)+(4−i)t+(9+i)e6t)sY1(s)−y1(0)=(1+4i)Y1(s)+4−is2+9+is−6sY1(s)−(1+4i)Y1(s)=y1(0)+4−is2+9+is−6(s−1−4i)Y1(s)=21+35i17+4−is2+9+is−6Y1(s)=21+35i17(s−1−4i)+4−is2(s−1−4i)+9+i(s−6)(s−1−4i)
Without repeating, we get, similarly, that
Y2(s)=21−35i17(s−1+4i)+4+is2(s−1+4i)+9−i(s−6)(s−1+4i)
The rest is just ugly partial fractions and inverse Laplace transform.
No comments:
Post a Comment