Problem:
Prove sin6(x)+cos6(x)−1sin4(x)+cos4(x)−1=32.
Solution:
Let's first divide as if we do not know they are trigonometry functions. We have
(sin4(x)+cos4(x)−1)(sin2(x)+cos2(x))=sin6(x)+cos4(x)sin2(x)−sin2(x)+sin4(x)cos2(x)+cos6(x)−cos2(x)=sin6(x)+cos6(x)+cos4(x)sin2(x)+sin4(x)cos2(x)−sin2(x)−cos2(x)=sin6(x)+cos6(x)+cos2(x)sin2(x)(cos2(x)+sin2(x))−sin2(x)−cos2(x)
Of course, we know they are actually trigonometry functions, therefore we can simplify sin2(x)+cos2(x)=1 and therefore we have
(sin4(x)+cos4(x)−1)=(sin4(x)+cos4(x)−1)(sin2(x)+cos2(x))=sin6(x)+cos6(x)+cos2(x)sin2(x)(cos2(x)+sin2(x))−sin2(x)−cos2(x)=sin6(x)+cos6(x)+cos2(x)sin2(x)−1
Rearranging, we have sin6(x)+cos6(x)−1=(sin4(x)+cos4(x)−1)−cos2(x)sin2(x) , note this equation, we will use it later.
Now we see some cos2(x) and sin2(x), next, let try to simplify the 4th power to the 2nd power
1=(sin2(x)+cos2(x))2=sin4(x)+2sin2(x)cos2(x)+cos4(x)
Rearranging, we have sin4(x)+cos4(x)−1=−2sin2(x)cos2(x) , note this equation, we will use it later.
Putting them altogether, we finally conclude:
sin6(x)+cos6(x)−1sin4(x)+cos4(x)−1=(sin4(x)+cos4(x)−1)−cos2(x)sin2(x)sin4(x)+cos4(x)−1=1−cos2(x)sin2(x)sin4(x)+cos4(x)−1=1−cos2(x)sin2(x)−2sin2(x)cos2(x)=1−1−2=32
Q.E.D.
Prove sin6(x)+cos6(x)−1sin4(x)+cos4(x)−1=32.
Solution:
Let's first divide as if we do not know they are trigonometry functions. We have
(sin4(x)+cos4(x)−1)(sin2(x)+cos2(x))=sin6(x)+cos4(x)sin2(x)−sin2(x)+sin4(x)cos2(x)+cos6(x)−cos2(x)=sin6(x)+cos6(x)+cos4(x)sin2(x)+sin4(x)cos2(x)−sin2(x)−cos2(x)=sin6(x)+cos6(x)+cos2(x)sin2(x)(cos2(x)+sin2(x))−sin2(x)−cos2(x)
Of course, we know they are actually trigonometry functions, therefore we can simplify sin2(x)+cos2(x)=1 and therefore we have
(sin4(x)+cos4(x)−1)=(sin4(x)+cos4(x)−1)(sin2(x)+cos2(x))=sin6(x)+cos6(x)+cos2(x)sin2(x)(cos2(x)+sin2(x))−sin2(x)−cos2(x)=sin6(x)+cos6(x)+cos2(x)sin2(x)−1
Rearranging, we have sin6(x)+cos6(x)−1=(sin4(x)+cos4(x)−1)−cos2(x)sin2(x) , note this equation, we will use it later.
Now we see some cos2(x) and sin2(x), next, let try to simplify the 4th power to the 2nd power
1=(sin2(x)+cos2(x))2=sin4(x)+2sin2(x)cos2(x)+cos4(x)
Rearranging, we have sin4(x)+cos4(x)−1=−2sin2(x)cos2(x) , note this equation, we will use it later.
Putting them altogether, we finally conclude:
sin6(x)+cos6(x)−1sin4(x)+cos4(x)−1=(sin4(x)+cos4(x)−1)−cos2(x)sin2(x)sin4(x)+cos4(x)−1=1−cos2(x)sin2(x)sin4(x)+cos4(x)−1=1−cos2(x)sin2(x)−2sin2(x)cos2(x)=1−1−2=32
Q.E.D.
No comments:
Post a Comment