online advertising
Loading [MathJax]/jax/output/HTML-CSS/jax.js

Sunday, September 20, 2015

A Trigonometry problem

Problem:

Prove sin6(x)+cos6(x)1sin4(x)+cos4(x)1=32.

Solution:

Let's first divide as if we do not know they are trigonometry functions. We have

(sin4(x)+cos4(x)1)(sin2(x)+cos2(x))=sin6(x)+cos4(x)sin2(x)sin2(x)+sin4(x)cos2(x)+cos6(x)cos2(x)=sin6(x)+cos6(x)+cos4(x)sin2(x)+sin4(x)cos2(x)sin2(x)cos2(x)=sin6(x)+cos6(x)+cos2(x)sin2(x)(cos2(x)+sin2(x))sin2(x)cos2(x)

Of course, we know they are actually trigonometry functions, therefore we can simplify sin2(x)+cos2(x)=1 and therefore we have

(sin4(x)+cos4(x)1)=(sin4(x)+cos4(x)1)(sin2(x)+cos2(x))=sin6(x)+cos6(x)+cos2(x)sin2(x)(cos2(x)+sin2(x))sin2(x)cos2(x)=sin6(x)+cos6(x)+cos2(x)sin2(x)1

Rearranging, we have sin6(x)+cos6(x)1=(sin4(x)+cos4(x)1)cos2(x)sin2(x) , note this equation, we will use it later.

Now we see some cos2(x) and sin2(x), next, let try to simplify the 4th power to the 2nd power

1=(sin2(x)+cos2(x))2=sin4(x)+2sin2(x)cos2(x)+cos4(x)

Rearranging, we have sin4(x)+cos4(x)1=2sin2(x)cos2(x) , note this equation, we will use it later.

Putting them altogether, we finally conclude:

sin6(x)+cos6(x)1sin4(x)+cos4(x)1=(sin4(x)+cos4(x)1)cos2(x)sin2(x)sin4(x)+cos4(x)1=1cos2(x)sin2(x)sin4(x)+cos4(x)1=1cos2(x)sin2(x)2sin2(x)cos2(x)=112=32

Q.E.D.

No comments:

Post a Comment