Problem:
Solution:
Define the reference frame with the origin at the bird's initial position, right is positive, up is positive.
Let the initial velocity of the bird to be →v and the launching angle be θ.
vx(t)=|→v|cosθvy(t)=|→v|sinθ−gtx(t)=(|→v|cosθ)ty(t)=(|→v|sinθ)t−gt22+10
Now put in the end conditions and simplify
12=y(2.5)=(|→v|sinθ)(2.5)−g(2.5)22+1013.3=(|→v|sinθ)55=x(2.5)=(|→v|cosθ)(2.5)22=(|→v|cosθ)
Now we get tan(θ)=13.3/22, or θ=31.15o.
Solution:
Define the reference frame with the origin at the bird's initial position, right is positive, up is positive.
Let the initial velocity of the bird to be →v and the launching angle be θ.
vx(t)=|→v|cosθvy(t)=|→v|sinθ−gtx(t)=(|→v|cosθ)ty(t)=(|→v|sinθ)t−gt22+10
Now put in the end conditions and simplify
12=y(2.5)=(|→v|sinθ)(2.5)−g(2.5)22+1013.3=(|→v|sinθ)55=x(2.5)=(|→v|cosθ)(2.5)22=(|→v|cosθ)
Now we get tan(θ)=13.3/22, or θ=31.15o.
No comments:
Post a Comment