Problem:
$ 1^2 - 2^2 + 3^2 - 4^2 + \cdots - (2n)^2 $
Solution:
We will assume the formula:
$ 1 + 2 + \cdots + n = \frac{n(n+1)}{2} $
$ 1^2 + 2^2 + \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6} $
We split the sum into two halves:
$ 1^2 + 3^2 + 5^2 + \cdots + (2n - 1)^2 $ can be think of as
$ (2 \times 0 + 1)^2 + (2 \times 1 + 1)^2 + \cdots + (2 \times (n - 1) + 1)^2 $
Expanding them we get
$ (4 \times 0^2 + 4 \times 0 + 1) + (4 \times 1^2 + 4 \times 1 + 1) + \cdots + (4(n-1)^2 + 4(n-1) + 1) $.
Grouping terms, factoring and applying the formula, we get
$ 4\frac{(n - 1)(n)(2n - 1)}{6} + 4\frac{(n-1)(n)}{2} + n $
Simplifying we get
$ \frac{n(2n - 1)(2n + 1)}{3} $
The even number squared sum is easier, we can think of them as just a scaled version of the square sum
$ 2^2 + 4^2 + \cdots + (2n)^2 $
$ 4(1^2 + 2^2 + \cdots + n^2) $
The answer is simply $ \frac{2n(n + 1)(2n + 1)}{3} $
Therefore, the final answer is simply the difference of the two sums, and it is
$ -n(2n + 1) $
$ 1^2 - 2^2 + 3^2 - 4^2 + \cdots - (2n)^2 $
Solution:
We will assume the formula:
$ 1 + 2 + \cdots + n = \frac{n(n+1)}{2} $
$ 1^2 + 2^2 + \cdots + n^2 = \frac{n(n + 1)(2n + 1)}{6} $
We split the sum into two halves:
$ 1^2 + 3^2 + 5^2 + \cdots + (2n - 1)^2 $ can be think of as
$ (2 \times 0 + 1)^2 + (2 \times 1 + 1)^2 + \cdots + (2 \times (n - 1) + 1)^2 $
Expanding them we get
$ (4 \times 0^2 + 4 \times 0 + 1) + (4 \times 1^2 + 4 \times 1 + 1) + \cdots + (4(n-1)^2 + 4(n-1) + 1) $.
Grouping terms, factoring and applying the formula, we get
$ 4\frac{(n - 1)(n)(2n - 1)}{6} + 4\frac{(n-1)(n)}{2} + n $
Simplifying we get
$ \frac{n(2n - 1)(2n + 1)}{3} $
The even number squared sum is easier, we can think of them as just a scaled version of the square sum
$ 2^2 + 4^2 + \cdots + (2n)^2 $
$ 4(1^2 + 2^2 + \cdots + n^2) $
The answer is simply $ \frac{2n(n + 1)(2n + 1)}{3} $
Therefore, the final answer is simply the difference of the two sums, and it is
$ -n(2n + 1) $